首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47414篇
  免费   3349篇
  国内免费   20篇
  50783篇
  2024年   52篇
  2023年   175篇
  2022年   565篇
  2021年   912篇
  2020年   568篇
  2019年   682篇
  2018年   1027篇
  2017年   906篇
  2016年   1477篇
  2015年   2320篇
  2014年   2666篇
  2013年   2979篇
  2012年   3939篇
  2011年   3778篇
  2010年   2394篇
  2009年   2187篇
  2008年   3028篇
  2007年   2909篇
  2006年   2541篇
  2005年   2356篇
  2004年   2164篇
  2003年   1866篇
  2002年   1615篇
  2001年   1301篇
  2000年   1228篇
  1999年   990篇
  1998年   393篇
  1997年   338篇
  1996年   245篇
  1995年   209篇
  1994年   207篇
  1993年   172篇
  1992年   326篇
  1991年   295篇
  1990年   267篇
  1989年   226篇
  1988年   173篇
  1987年   164篇
  1986年   131篇
  1985年   106篇
  1984年   78篇
  1983年   84篇
  1982年   63篇
  1981年   53篇
  1980年   54篇
  1979年   69篇
  1978年   51篇
  1977年   50篇
  1976年   43篇
  1974年   63篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Neuroblastoma is a malignant neoplasm of the developing sympathetic nervous system that is notable for its phenotypic diversity. High-risk patients typically have widely disseminated disease at diagnosis and a poor survival probability, but low-risk patients frequently have localized tumors that are almost always cured with little or no chemotherapy. Our genome-wide association study (GWAS) has identified common variants within FLJ22536, BARD1, and LMO1 as significantly associated with neuroblastoma and more robustly associated with high-risk disease. Here we show that a GWAS focused on low-risk cases identified SNPs within DUSP12 at 1q23.3 (P = 2.07×10−6), DDX4 and IL31RA both at 5q11.2 (P = 2.94×10−6 and 6.54×10−7 respectively), and HSD17B12 at 11p11.2 (P = 4.20×10−7) as being associated with the less aggressive form of the disease. These data demonstrate the importance of robust phenotypic data in GWAS analyses and identify additional susceptibility variants for neuroblastoma.  相似文献   
992.
The production of human therapeutic proteins in plants provides opportunities for low-cost production, and minimizes the risk of contamination from potential human pathogens. Chloroplast genetic engineering is a particularly promising strategy, because plant chloroplasts can produce large amounts of foreign target proteins. Oxidative stress is a key factor in various human diseases. Human thioredoxin 1 (hTrx1) is a stress-induced protein that functions as an antioxidant against oxidative stress, and overexpression of hTrx1 has been shown to suppress various diseases in mice. Therefore, hTrx1 is a prospective candidate as a new human therapeutic protein. We created transplastomic lettuce expressing hTrx1 under the control of the psbA promoter. Transplastomic plants grew normally and were fertile. The hTrx1 protein accumulated to approximately 1% of total soluble protein in mature leaves. The hTrx1 protein purified from lettuce leaves was functionally active, and reduced insulin disulfides. The purified protein protected mouse insulinoma line 6 cells from damage by hydrogen peroxide, as reported previously for a recombinant hTrx1 expressed in Escherichia coli. This is the first report of expression of the biologically active hTrx1 protein in plant chloroplasts. This research opens up possibilities for plant-based production of hTrx1. Considering that this expression host is an edible crop plant, this transplastomic lettuce may be suitable for oral delivery of hTrx1.  相似文献   
993.
The inducible microsomal prostaglandin E(2) synthase 1 (MPGES1) is an integral membrane protein coexpressed with and functionally coupled to cyclooxygenase 2 (COX-2) generating the pro-inflammatory molecule PGE(2). The development of effective inhibitors of MPGES1 holds promise as a highly selective route for controlling inflammation. In this paper, we describe the use of backbone amide H/D exchange mass spectrometry to map the binding sites of different types of inhibitors of MPGES1. The results reveal the locations of specific inhibitor binding sites that include the GSH binding site and a hydrophobic cleft in the protein thought to accommodate the prostaglandin H(2) substrate. In the absence of three-dimensional crystal structures of the enzyme-bound inhibitors, the results provide clear physical evidence that three pharmacologically active inhibitors bind in a hydrophobic cleft composed of sections of transmembrane helices Ia, IIb, IIIb, and IVb at the interface of subunits in the trimer. In principle, the H/D exchange behavior of the protein can be used as a preliminary guide for optimization of inhibitor efficacy. Finally, a comparison of the structures and H/D exchange behavior of MPGES1 and the related enzyme MGST1 in the presence of glutathione and the inhibitor glutathione sulfonate confirms the unusual observation that two proteins from the same superfamily harbor GSH binding sites in different locations.  相似文献   
994.
Currently, mortality compost is managed by temperature as extent of tissue degradation is difficult to assess. In the present study, field-scale mortality compost was constructed with composted brain tissue (Brain) and compost adjacent to brain tissue (CAB) sampled over 230 d. Following genomic DNA extraction, bovine-specific mitochondrial DNA (Mt-DNA) and bacterial 16S rDNA fragments were quantified using real-time PCR. Genomic DNA yield of Brain and CAB decreased rapidly (89-98%) and stabilized after 7 d. Compared to d 0, Brain Mt-DNA rapidly decreased (84-91% reduction on d 7). In CAB, Mt-DNA dramatically increased until d 28 (up to 34,500 times) thereafter decreasing by 77-93% on d 112. Quantification of bovine Mt-DNA indicates tissue degradation was initially characterized by rapid decomposition and release of cell contents into surrounding compost matrix followed by further degradation of Mt-DNA by flourishing microorganisms. Consequently, bovine Mt-DNA copies in compost matrix were reliable indicators of tissue degradation.  相似文献   
995.
We employed and evaluated a new application of contrast-enhanced ultrasound for real-time imaging of changes in microvascular blood volume (MBV) in tissues in females, males, and rat. Continuous real-time imaging was performed using contrast-enhanced ultrasound to quantify infused gas-filled microbubbles in the microcirculation. It was necessary to infuse microbubbles for a minimum of 5-7 min to obtain steady-state bubble concentration, a prerequisite for making comparisons between different physiological states. Insulin clamped at a submaximal concentration (~75 μU/ml) increased MBV by 27 and 39% in females and males, respectively, and by 30% in female subcutaneous adipose tissue. There was no difference in the ability of insulin to increase muscle MBV in females and males, and microvascular perfusion rate was not increased significantly by insulin. However, perfusion rate of the microvascular space was higher in females compared with males. In rats, insulin clamped at a maximal concentration increased muscle MBV by 60%. Large increases in microvascular volume and perfusion rate were detected during electrical stimulation of muscle in rats and immediately after exercise in humans. We have demonstrated that real-time imaging of changes in MBV is possible in human and rat muscle and in subcutaneous adipose tissue and that the method is sensitive enough to pick up relatively small changes in MBV when performed with due consideration of steady-state microbubble concentration. Because of real-time imaging, the method has wide applications for determining MBV in different organs during various physiological or pathophysiological conditions.  相似文献   
996.
997.

Purpose

We sought to identify genes of clinical significance to predict survival and the risk for colorectal liver metastasis (CLM), the most common site of metastasis from colorectal cancer (CRC).

Patients and Methods

We profiled gene expression in 31 specimens from primary CRC and 32 unmatched specimens of CLM, and performed Significance Analysis of Microarrays (SAM) to identify genes differentially expressed between these two groups. To characterize the clinical relevance of two highly-ranked differentially-expressed genes, we analyzed the expression of secreted phosphoprotein 1 (SPP1 or osteopontin) and lymphoid enhancer factor-1 (LEF1) by immunohistochemistry using a tissue microarray (TMA) representing an independent set of 154 patients with primary CRC.

Results

Supervised analysis using SAM identified 963 genes with significantly higher expression in CLM compared to primary CRC, with a false discovery rate of <0.5%. TMA analysis showed SPP1 and LEF1 protein overexpression in 60% and 44% of CRC cases, respectively. Subsequent occurrence of CLM was significantly correlated with the overexpression of LEF1 (chi-square p = 0.042), but not SPP1 (p = 0.14). Kaplan Meier analysis revealed significantly worse survival in patients with overexpression of LEF1 (p<0.01), but not SPP1 (p = 0.11). Both univariate and multivariate analyses identified stage (p<0.0001) and LEF1 overexpression (p<0.05) as important prognostic markers, but not tumor grade or SPP1.

Conclusion

Among genes differentially expressed between CLM and primary CRC, we demonstrate overexpression of LEF1 in primary CRC to be a prognostic factor for poor survival and increased risk for liver metastasis.  相似文献   
998.
999.
1000.
Cycloheximide at 0.1 to 0.2 mM increases cAMP concentration up to five-fold in epididymal fat tissue in vitro. This increase in cAMP concentration is accompanied by a 40% activation of glycogen phosphorylase. Propranolol, a specific β-adrenergic antagonist, blocks the cycloheximide-mediated cAMP increase. Epinephrine stimulates cAMP formation up to 25-fold under the same condition. This increase is also blocked by propranolol. Cycloheximide also partially blocks the epinephrine stimulated cAMP increase, suggesting that both compounds act at the same site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号