On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor. 相似文献
We examined the genetic divergence of Platycerus hongwonpyoi Imura & Choe, 1989 in South Korea using the nuclear wingless (Wg) gene, internal transcribed spacer (ITS) region and mitochondrial cytochrome oxidase subunit I (COI) gene. We found no variation in Wg or ITS. Based on COI, P. hongwonpyoi was split into four well defined and one weakly supported clades, which were inferred to have diverged 2.11–1.33 Ma. The Platycerus hongwonpyoi population size seems to have decreased during the past several tens of thousands of years. The divergence times of major clades of P. hongwonpyoi were comparable with those involved in the speciation of certain Japanese species. Frequent overlapping of different clades at the same sites suggests the occurrence of secondary gene flow following differentiation in South Korea. In conclusion, the genus Platycerus underwent strikingly different divergence patterns in South Korea compared with Japan according to the disparate topographies of these two geographical areas. 相似文献
In aquaculture, feeding is essential for the maintenance of metabolic processes and homoeostasis of fish. However, fasting acts as a stressor. In this study, we investigated the effect of circadian rhythm under various LED wavelengths [blue (460 nm), green (520 nm) and red (630 nm)] and two light intensities (0.3 and 0.6 W m?2) over a 9-days period in the olive flounder (Paralichthys olivaceus). We analysed clock genes like period 2 (Per 2) and cryptochrome 1 (Cry 1), and serotonin and arylalkylamine-N-acetyltransferase 2 (AANAT 2), which control circadian rhythms. Per 2, Cry 1, serotonin and AANAT 2 were significantly decreased during the starvation period compared to the normal feeding group. Nevertheless, their levels increased in the groups exposed to green- and blue LED light during the experimental period. These results confirmed that green and blue wavelengths are effective in maintaining the circadian rhythm in olive flounder. 相似文献
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-d-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of l-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Neurochemical Research - Schwann cells are essential glial cells in the peripheral nervous system (PNS), and dysfunction of Schwann cells can induce various peripheral neurodegenerative diseases.... 相似文献
Internal Ribosome Entry Site (IRES)-based bicistronic vectors are important tools in today's cell biology. Among applications,
the expression of two proteins under the control of a unique promoter permits the monitoring of expression of a protein whose
biological function is being investigated through the observation of an easily detectable tracer, such as Green Fluorescent
Protein (GFP). However, analysis of published results making use of bicistronic vectors indicates that the efficiency of the
IRES-controlled expression can vary widely from one vector to another, despite their apparent identical IRES sequences. We
investigated the molecular basis for these discrepancies. 相似文献