首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49972篇
  免费   3643篇
  国内免费   19篇
  2023年   179篇
  2022年   581篇
  2021年   938篇
  2020年   585篇
  2019年   701篇
  2018年   1056篇
  2017年   941篇
  2016年   1531篇
  2015年   2401篇
  2014年   2757篇
  2013年   3101篇
  2012年   4071篇
  2011年   3922篇
  2010年   2493篇
  2009年   2271篇
  2008年   3150篇
  2007年   3041篇
  2006年   2643篇
  2005年   2459篇
  2004年   2264篇
  2003年   1972篇
  2002年   1703篇
  2001年   1382篇
  2000年   1334篇
  1999年   1074篇
  1998年   424篇
  1997年   382篇
  1996年   280篇
  1995年   248篇
  1994年   242篇
  1993年   209篇
  1992年   384篇
  1991年   348篇
  1990年   325篇
  1989年   273篇
  1988年   205篇
  1987年   198篇
  1986年   179篇
  1985年   139篇
  1984年   95篇
  1983年   103篇
  1982年   85篇
  1981年   72篇
  1980年   67篇
  1979年   90篇
  1978年   67篇
  1977年   62篇
  1976年   61篇
  1974年   76篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Kim MS  Pandey A 《Proteomics》2012,12(4-5):530-542
Mass spectrometry has rapidly evolved to become the platform of choice for proteomic analysis. While CID remains the major fragmentation method for peptide sequencing, electron transfer dissociation (ETD) is emerging as a complementary method for the characterization of peptides and post-translational modifications (PTMs). Here, we review the evolution of ETD and some of its newer applications including characterization of PTMs, non-tryptic peptides and intact proteins. We will also discuss some of the unique features of ETD such as its complementarity with CID and the use of alternating CID/ETD along with issues pertaining to analysis of ETD data. The potential of ETD for applications such as multiple reaction monitoring and proteogenomics in the future will also be discussed.  相似文献   
993.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   
994.
This paper is intended as an investigation of the biogeographic characteristics of insect faunas of the seven islands in West Coastal of Incheon, Korea, using quantitative analysis. The faunal similarity is examined using the Bray & Curtis similarity. The obtained similarity value matrix was examined by a cluster analysis using UPGMA method. The number and the distribution records of each species in the areas are 1,001 species of insects belonging to 12 orders from the seven investigated islands. Among above seven islands, Seokmodo has the highest number of species, 497 species, while Yeonpyeongdo has the lowest, 136 species. The species composition of insects reported in Ganghwado was 309 species under seven orders. The similarity values between seven localities investigated range from 24.907(Gyodongdo to Yeonpyeongdo) to 49.899(Baengnyeongdo to Ganghwado). That is, the species composition of Baengnyeongdo(47.90%) was similar to that of Ganghwado, while that of Yeonpyeongdo(25.28%) was different from that. The cluster analysis using a similarity index shows that all the islands of these areas can be divided into 3 groups at the level of 30.97%.  相似文献   
995.
Phospholipase D (PLD) has been implicated in a variety of cellular processes, including inflammation, secretion, and respiratory burst. Two distinct PLD isoforms, designated PLD1 and PLD2, have been cloned; however, the regulatory mechanism for each PLD isoform is not clear. In our present study we investigated how PLD2 activity is regulated in mouse lymphocytic leukemia L1210 cells, which mainly contain PLD2, and in PLD2 -transfected COS-7 cells. Intriguingly, A23187, a calcium ionophore that induces calcium influx, potently stimulates PLD activity in these two cell lines, suggesting that Ca2+ might be implicated in the regulation of the PLD2 activity. In addition to the A23187-induced PLD2 activation, A23187 also increases PLA2-mediated arachidonic acid release, and the A23187-stimulated PLD2 and PLA2 activities could be blocked by pretreatment of the cells with cytosolic calcium-dependent PLA2 (cPLA2) inhibitors, such as arachidonyl trifluoromethyl ketone and methyl arachidonyl fluorophosphonate in these two cell lines. Moreover, the A23187-induced PLD2 and PLA2 activities could be inhibited by cotransfection with antisense cPLA2 oligonucleotide. These results suggest a role for cPLA2 in the regulation of PLD2 activity in vivo. The inhibitory effect of arachidonyl trifluoromethyl ketone on the A23187-induced PLD2 activity could be recovered by addition of exogenous lysophosphatidylcholine. This study is the first to demonstrate that PLD2 activity is up-regulated by Ca2+ influx and that cPLA2 may play a key role in the Ca2+-dependent regulation of PLD2 through generation of lysophosphatidylcholine.  相似文献   
996.
Disintegrin is one of the functionally distinct domains in high molecular weight metalloproteases from various snake venoms and generally has an Arg-Gly-Asp (RGD) sequence that is recognized by specific cell surface integrins. A cDNA encoding the disintegrin-like domain of a snake venom metalloprotease was cloned, expressed in Pichia pastoris, and molecular function of the recombinant protein was characterized. The cDNA sequence indicated that the disintegrin-like domain contains an Asp-Glu-Cys-Asp (DECD) sequence in place of the RGD motif. The expressed disintegrin-like protein was designated as halydin and it was able to inhibit human platelet aggregation in a dose-dependent manner. Unlike other typical RGD-disintegrins, the recombinant non-RGD disintegrin, halydin, inhibited platelet aggregation by suppressing platelet adhesion to collagen rather than by blocking fibrinogen binding to glycoprotein (GP) IIb-IIIa on the platelet surface. Experimental evidence suggests that halydin binds to integrin alpha2beta1 on the platelet surface.  相似文献   
997.
Although the hepatitis B virus X protein (HBx) is thought to play a causative role in the development of hepatocellular carcinoma, it is not yet known whether interfering with HBx function may affect the cellular transformation of HBx-expressing tumor cells. To address this question, we adopted an intracellular antibody fragment expression approach to block the function of HBx. Expression of a single-chain variable fragment (scFv) specific to HBx (designated as H7scFv) inhibited HBx-dependent cellular transactivation. Furthermore, H7scFv suppressed the growth of HBx-expressing tumor cells in both soft agar and nude mice. The suppressive effect of H7scFv on tumorigenicity appeared not to be mediated by inhibition of HBx-induced growth stimulation since the growth rate of these cells was not affected significantly by H7scFv expression. In conclusion, these data suggest that the HBx-dependent transformed phenotype is reversible and that HBx may be a good molecular target for the treatment of HBV-related tumors.This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health& Welfare, Republic of Korea (03-PJ1-PG3-20200–0023)  相似文献   
998.
Activation of glycolytic genes by HIF-1 is considered critical for metabolic adaptation to hypoxia through increased conversion of glucose to pyruvate and subsequently to lactate. We found that HIF-1 also actively suppresses metabolism through the tricarboxylic acid cycle (TCA) by directly trans-activating the gene encoding pyruvate dehydrogenase kinase 1 (PDK1). PDK1 inactivates the TCA cycle enzyme, pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA. Forced PDK1 expression in hypoxic HIF-1alpha null cells increases ATP levels, attenuates hypoxic ROS generation, and rescues these cells from hypoxia-induced apoptosis. These studies reveal a hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production.  相似文献   
999.
Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.  相似文献   
1000.
Biomass-derived volatile fatty acid platform for fuels and chemicals   总被引:1,自引:0,他引:1  
The typical biorefinery platforms are sugar, thermochemical (syngas), carbon-rich chains, and biogas platforms, each offering unique advantages and disadvantages. The sugar platform uses hexose and pentose sugars extracted or converted from plant body mass. The thermochemical (syngas) platform entails a chemical or biological conversion process using pyrolysis or gasification of plants to produce biofuels. The carbon-rich chains platform is used to produce biodiesel from long-chain fatty acids or glycerides. In the present work, we suggest a new platform using volatile fatty acids (VFAs) for the production of biofuels and biochemicals production. The VFAs are short-chain fatty acids composed mainly of acetate and butyrate in the anaerobic digestion (AD) process, which does not need sterilization, additional hydrolysis enzymes (cellulose or xylanase), or a high cost pretreatment step. VFAs are easily produced from almost all kinds of biomass with low lignin content (terrestrial, aquatic, and marine biomass) by the AD process. Considering that raw material alone constitutes 40∼80% of biofuel production costs, biofuels made from VFAs derived from waste organic biomass potentially offer significant economical advantage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号