首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   25篇
  445篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   8篇
  2017年   9篇
  2016年   4篇
  2015年   24篇
  2014年   22篇
  2013年   22篇
  2012年   30篇
  2011年   28篇
  2010年   17篇
  2009年   14篇
  2008年   17篇
  2007年   12篇
  2006年   19篇
  2005年   13篇
  2004年   13篇
  2003年   16篇
  2002年   12篇
  2001年   10篇
  2000年   9篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   13篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1977年   3篇
  1974年   1篇
  1952年   1篇
  1935年   1篇
  1934年   1篇
排序方式: 共有445条查询结果,搜索用时 15 毫秒
41.
Protein arrays will greatly accelerate research and development in medical and biological sciences. We have used cell-free protein biosynthesis and a parallel immobilization strategy for producing protein biochips. We demonstrate a model two-protein microarray using luciferase and green fluorescent protein, both expressed in a cell-free system and specifically immobilized on CombiMatrix semiconductor oligonucleotide microarrays. This demonstration provides evidence for the appropriate folding, activity, robust presentation, and efficient flexible detection of proteins on the microscale.  相似文献   
42.
The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putative progenitors of wheat B and G genomes. Fifty-nine Aegilops representatives for S genome diversity were compared at 375 AFLP loci with diploid, tetraploid, and 11 nulli-tetrasomic Triticum aestivum wheat lines. B genome-specific markers allowed pinning the origin of the B genome to S chromosomes of A. speltoides, while excluding other lineages. The outbreeding nature of A. speltoides influences its molecular diversity and bears upon inferences of B and G genome origins. Haplotypes at nuclear and chloroplast loci ACC1, G6PDH, GPT, PGK1, Q, VRN1, and ndhF for approximately 70 Aegilops and Triticum lines (0.73 Mb sequenced) reveal both B and G genomes of polyploid wheats as unique samples of A. speltoides haplotype diversity. These have been sequestered by the AABB Triticum dicoccoides and AAGG Triticum araraticum lineages during their independent origins.  相似文献   
43.
44.
Macrophages are the primary habitat of pathogenic mycobacteria during infections. Current research about the host–pathogen interaction on the cellular level is still going on. The present study proves the potential of Raman microspectroscopy as a label‐free and non‐invasive method to investigate intracellular mycobacteria in situ. Therefore, macrophages were infected with Mycobacterium gordonae, a mycobacterium known to cause inflammation linked to intracellular survival in macrophages. Here, we show that Raman maps provided spatial and spectral information about the position of bacteria within determined cell margins of macrophages in two‐dimensional scans and in three‐dimensional image stacks. Simultaneously, the relative intracellular concentration and distributions of cellular constituents such as DNA, proteins and lipids provided phenotypic information about the infected macrophages. Locations of bacteria outside or close to the outer membrane of the macrophages were notably different in their spectral pattern compared with intracellular once. Furthermore, accumulations of bacteria inside of macrophages exhibit distinct spectral/molecular information because of the chemical composition of the intracellular microenvironment. The data show that the connection of microscopically and chemically gained information provided by Raman microspectroscopy offers a new analytical way to detect and to characterize the mycobacterial infection of macrophages.  相似文献   
45.

Background

Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results

Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.

Conclusions

The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
  相似文献   
46.
Several groups of algae evolved by secondary endocytobiosis, which is defined as the uptake of a eukaryotic alga into a eukaryotic host cell and the subsequent transformation of the endosymbiont into an organelle. Due to this explicit evolutionary history such algae possess plastids that are surrounded by either three or four membranes. Protein targeting into plastids of these organisms depends on N-terminal bipartite presequences consisting of a signal and a transit peptide domain. This suggests that different protein targeting systems may have been combined during establishment of secondary endocytobiosis to enable the transport of proteins into the plastids. Here we demonstrate the presence of an apparently new type of transport into diatom plastids. We analyzed protein targeting into the plastids of diatoms and identified a conserved amino acid sequence motif within plastid preprotein targeting sequences. We expressed several diatom plastid presequence:GFP fusion proteins with or without modifications within that motif in the diatom Phaeodactylum tricornutum and found that a single conserved phenylalanine is crucial for protein transport into the diatom plastids in vivo, thus indicating the presence of a so far unknown new type of targeting signal. We also provide experimental data about the minimal requirements of a diatom plastid targeting presequence and demonstrate that the signal peptides of plastid preproteins and of endoplasmic reticulum-targeted preproteins in diatoms are functionally equivalent. Furthermore we show that treatment of the cells with Brefeldin A arrests protein transport into the diatom plastids suggesting that a vesicular transport step within the plastid membranes may occur.  相似文献   
47.
48.
Telomeric repeat amplification protocol (TRAP)--a sensitive, PCR-based assay to detect telomerase activity was quintessential to the evaluation of telomerase role in telomere maintenance, cell proliferation, tumour development, and cell immortalization. The assay, however, suffers from many limitations. The most significant are: lack of telomerase activity quantification, changes of the enzyme activity product size and/or ratio, and complex post-amplification procedures which limit the assay throughput. Here we report the development of the microarray TRAP (MTRAP) assay which combines advantages of microarray technology with a modified TRAP assay. The MTRAP was designed and optimized on rice cell suspension telomerase extract to enable telomerase specific, reliable, and linear quantification in high throughput mode, with sensitivity comparable to those of radioisotope-based TRAP assays. The MTRAP has a built-in system guaranteeing the amplification of telomerase activity products unchanged in length and/or ratio and built-in control for false negatives. Thus, our MTRAP assay provides new reliable tool for experiments requiring massive quantitation of telomerase activity.  相似文献   
49.
50.
Targeting of nucleus-encoded proteins into chloroplasts is mediated by N-terminal presequences. During evolution of plastids from formerly free-living cyanobacteria by endocytobiosis, genes for most plastid proteins have been transferred from the plastid genome to the nucleus and subsequently had to be equipped with such plastid targeting sequences. So far it is unclear how the gene domains coding for presequences and the respective mature proteins may have been assembled. While land plant plastids are supposed to originate from a primary endocytobiosis event (a prokaryotic cyanobacterium was taken up by a eukaryotic cell), organisms with secondary plastids like diatoms experienced a second endocytobiosis step involving a eukaryotic alga taken up by a eukaryotic host cell. In this group of algae, apparently most genes encoding chloroplast proteins have been transferred a second time (from the nucleus of the endosymbiont to the nucleus of the secondary host) and thus must have been equipped with additional targeting signals. We have analyzed cDNAs and the respective genomic DNA fragments of seven plastid preproteins from the diatom Phaeodactylum tricornutum. In all of these genes we found single spliceosomal introns, generally located within the region coding for the N-terminal plastid targeting sequences or shortly downstream of it. The positions of the introns can be related to the putative phylogenetic histories of the respective genes, indicating that the bipartite targeting sequences in these secondary algae might have evolved by recombination events via introns.The nucleotide sequences have been deposited at Genbank under accession numbers AY191862, AY191863, AY191864, AY191865, AY191866, AY191867, and AY191868.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号