首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3054篇
  免费   252篇
  3306篇
  2021年   22篇
  2020年   18篇
  2019年   20篇
  2018年   28篇
  2017年   29篇
  2016年   46篇
  2015年   69篇
  2014年   86篇
  2013年   125篇
  2012年   167篇
  2011年   150篇
  2010年   93篇
  2009年   85篇
  2008年   132篇
  2007年   135篇
  2006年   144篇
  2005年   132篇
  2004年   131篇
  2003年   145篇
  2002年   171篇
  2001年   50篇
  2000年   42篇
  1999年   45篇
  1998年   56篇
  1997年   50篇
  1996年   57篇
  1995年   52篇
  1994年   54篇
  1993年   39篇
  1992年   34篇
  1991年   31篇
  1990年   33篇
  1989年   33篇
  1988年   25篇
  1987年   28篇
  1986年   34篇
  1985年   35篇
  1984年   48篇
  1983年   34篇
  1982年   42篇
  1981年   42篇
  1980年   37篇
  1979年   20篇
  1978年   25篇
  1977年   23篇
  1976年   23篇
  1975年   21篇
  1974年   29篇
  1970年   22篇
  1968年   22篇
排序方式: 共有3306条查询结果,搜索用时 15 毫秒
991.
The activation of caspases is a central step in apoptosis and may also be critical for terminal differentiation of epidermal keratinocytes (KC). In particular, caspase-3 has been implicated in the differentiation of embryonic KC as well as in programmed cell death of KC, and caspase-14 has been suggested to function in the formation or homeostasis of the stratum corneum (SC). To test the putative roles of these proteases, we determined their expression level and activation status during development of fetal mouse epidermis. The level of procaspase-3 did not change significantly during epidermal development, and enzyme activation was undetectable at any timepoint investigated. Despite the lack of active caspase-3, the newly formed stratum granulosum and the regressing periderm contained cells positive in the terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick end labeling assay, indicating that nuclear DNA was degraded without activation of caspase-3, thereby arguing against a proteolytic function of caspase-3 in embryonic KC differentiation. By contrast, caspase-14 increased in abundance from embryonic day 14.5 (E14.5) onwards and consistently localized to the suprabasal layers of fetal epidermis. The caspase-14 pro-enzyme was processed into its catalytic subunits, a step required for enzyme activity, on day E17.5, coinciding with SC formation. Thus, processing of procaspase-14 is not confined to air-exposed mature skin but also occurs during epidermal development in utero. In summary, this study demonstrates that caspase-14, but not caspase-3 activation coincides temporally and spatially with embryonic KC differentiation, suggesting a role for caspase-14 in terminally differentiated KC.  相似文献   
992.
AIMS: To examine cellular injuries occurring in cells of Escherichia coli (Gram-negative bacteria) and Lactobacillus rhamnosus (Gram-positive bacteria) in response to a high-intensity ultrasound treatment using classical plate count technique and flow cytometry. METHOD AND RESULTS: According to plate count results, E. coli (D-value 8.3 min) was far more sensitive than L. rhamnosus (D-value 18.1 min) in their response to the ultrasound intensity applied (20 kHz, 17.6 W). The dye precursor carboxyfluorescein diacetate (cFDA) could freely diffuse across the cytoplasmic membrane of intact cells of Gram-positive bacteria L. rhamnosus, resulting in its intracellular enzymatic conversion and emission of green fluorescence. In contrast, the presence of an outer membrane on E. coli, which represents the class of Gram-negative bacteria, apparently disabled the penetration of viability marker cFDA. Ultrasound application on E. coli yielded in an increasing population with disintegrated outer membrane, which allowed penetration of cFDA and its intracellular enzymatic conversion as well as accumulation. In both organisms evaluated only a small population was labelled by propidium iodide upon exposure to ultrasound for up to 20 min. Within the experimental conditions investigated ultrasound did not considerably affect the cytoplasmic membrane, although according to plate count results viability loss occurred. CONCLUSIONS: The results compiled suggest, that ultrasound induced cell death, which may not be related to membrane damage. SIGNIFICANCE AND IMPACT OF THE STUDY: Limitation on the use of bacteriocins, which are aimed on destabilization of cytoplasmic membrane but inhibited by the outer membrane, could be overcome by ultrasound-assisted physical disruption of the outer membrane.  相似文献   
993.
The Medaka Expression Pattern Database (MEPD) is a database for gene expression patterns determined by in situ hybridization in the small freshwater fish medaka (Oryzias latipes). Data have been collected from various research groups and MEPD is developing into a central expression pattern depository within the medaka community. Gene expression patterns are described by images and terms of a detailed medaka anatomy ontology of over 4000 terms, which we have developed for this purpose and submitted to Open Biological Ontologies. Sequences have been annotated via BLAST match results and using Gene Ontology terms. These new features will facilitate data analyses using bioinformatics approaches and allow cross-species comparisons of gene expression patterns. Presently, MEPD has 19,757 entries, for 1024 of them the expression pattern has been determined.  相似文献   
994.
Radical SAM enzymes have only recently been recognized as an ancient family sharing an unusual radical-based reaction mechanism. This late appreciation is due to the extreme oxygen sensitivity of most radical SAM enzymes, making their characterization particularly arduous. Nevertheless, realization that the novel apposition of the established cofactors S-adenosylmethionine and [4Fe-4S] cluster creates an explosive source of catalytic radicals, the appreciation of the sheer size of this previously neglected family, and the rapid succession of three successfully solved crystal structures within a year have ensured that this family has belatedly been noted. In this review, we report the characterization of two enzymes: the established radical SAM enzyme, HemN or oxygen-independent coproporphyrinogen III oxidase from Escherichia coli, and littorine mutase, a presumed radical SAM enzyme, responsible for the conversion of littorine to hyoscyamine in plants. The enzymes are compared to other radical SAM enzymes and in particular the three reported crystal structures from this family, HemN, biotin synthase and MoaA, are discussed.  相似文献   
995.
The responsiveness of olfactory sensory neurons (OSNs) is based on odorant receptors (ORs) residing in the membrane of chemosensory cilia. It is still elusive as to when and how olfactory cilia are equipped with OR proteins rendering them responsive to odorants. To monitor the appearance of OR proteins in sensory compartments of OSNs, the olfactory epithelium of mice at various stages of prenatal development (lasting 19 days from conception) was investigated using immunohistochemical approaches and antibodies specific for different OR subtypes. These experiments uncovered that OR proteins accumulated in dendritic knobs of OSNs before the initiation of ciliogenesis (embryonic stage E12). As the first cilia were formed (E13), immunostaining in the knobs diminished. Cilia extended uprightly into the nasal cavity and were immunoreactive along the entire length, and particularly intense labeling was observed in expanded tips of cilia. During this phase of development (up to E18), the number of cilia per knob continuously increased. In the course of perinatal stages, longer cilia began to bend off and lie flat on the epithelial surface. The multiple cilia of a knob extended in length, and eventually the ciliary meshwork reached the characteristic complex pattern. In all stages, OR immunostaining was visible along the entire cilium. Thus, OR-specific antibodies allowed, for the first time, monitoring at the level of light microscopy the generation, outgrowth, and maturation of cilia in OSNs.  相似文献   
996.
The glycosyltransferase family 21 (GT21) includes both enzymes of eukaryotic and prokaryotic organisms. Many of the eukaryotic enzymes from animal, plant, and fungal origin have been characterized as uridine diphosphoglucose (UDP-Glc):ceramide glucosyltransferases (glucosylceramide synthases [Gcs], EC 2.4.1.80). As the acceptor molecule ceramide is not present in most bacteria, the enzymatic specificities and functions of the corresponding bacterial glycosyltransferases remain elusive. In this study, we investigated the homologous and heterologous expression of GT21 enzymes from Agrobacterium tumefaciens and Mesorhizobium loti in A. tumefaciens, Escherichia coli, and the yeast Pichia pastoris. Glycolipid analyses of the transgenic organisms revealed that the bacterial glycosyltransferases are involved in the synthesis of mono-, di- and even tri-glycosylated glycolipids. As products resulting from their activity, we identified 1,2-diacyl-3-(O-beta-D-galacto-pyranosyl)-sn-glycerol, 1,2-diacyl-3-(O-beta-D-gluco-pyranosyl)-sn-glycerol as well as higher glycosylated lipids such as 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol, 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->6)-O-beta-D-gluco-pyranosyl]-sn-glycerol, and the deviatingly linked diglycosyldiacylglycerol 1,2-diacyl-3-[O-beta-D-gluco-pyranosyl-(1-->3)-O-beta-D-galacto-pyranosyl]-sn-glycerol. From a mixture of triglycosyldiacylglycerols, 1,2-diacyl-3-[O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl-(1-->6)-O-beta-D-galacto-pyranosyl]-sn-glycerol could be separated in a pure form. In vitro enzyme assays showed that the glycosyltransferase from A. tumefaciens favours uridine diphosphogalactose (UDP-Gal) over UDP-Glc. In conclusion, the bacterial GT21 enzymes differ from the eukaryotic ceramide glucosyltransferases by the successive transfer of up to three galactosyl and glucosyl moieties to diacylglycerol.  相似文献   
997.
998.
Reticulons (RTNs) are a family of evolutionary conserved proteinswith four RTN paralogs (RTN1, RTN2, RTN3, and RTN4) presentin land vertebrates. While the exact functions of RTN1 to RTN3are unknown, mammalian RTN4-A/Nogo-A was shown to inhibit theregeneration of severed axons in the mammalian central nervoussystem (CNS). This inhibitory function is exerted via two distinctregions, one within the Nogo-A–specific N-terminus andthe other in the conserved reticulon homology domain (RHD).In contrast to mammals, fish are capable of CNS axon regeneration.We performed detailed analyses of the fish rtn gene family todetermine whether this regeneration ability correlates withthe absence of the neurite growth inhibitory protein Nogo-A.A total of 7 rtn genes were identified in zebrafish, 6 in pufferfish,and 30 in eight additional fish species. Phylogenetic and syntenicrelationships indicate that the identified fish rtn genes areorthologs of mammalian RTN1, RTN2, RTN3, and RTN4 and that severalparalogous fish genes (e.g., rtn4 and rtn6) resulted from genomeduplication events early in actinopterygian evolution. Accordingly,sequences homologous to the conserved RTN4/Nogo RHD are presentin two fish genes, rtn4 and rtn6. However, sequences comparableto the first 1,000 amino acids of mammalian Nogo-A includinga major neurite growth inhibitory region are absent in zebrafish.This result is in accordance with functional data showing thataxon growth inhibitory molecules are less prominent in fisholigodendrocytes and CNS myelin compared to mammals.  相似文献   
999.
Mutant mice are important for elucidating mammalian gene functions and for modeling human disease phenotypes. In recent years, chemical mutagenesis has become an increasingly popular method to disrupt gene functions due to its high efficiency of inducing mutations throughout the genome. Mutagenesis of embryonic stem (ES) cells offers the possibility of gene-driven approaches, which, however, require efficient mutation detection procedures to screen archives of mutated samples for lesions in particular genes. We have developed an approach that focuses on the detection of splice mutations in highly pooled cDNA samples using exon-skipping PCR primers. As a proof of concept, splice mutants for the Kit gene were isolated from a library comprising approximately 40,000 ES cell clones treated with N-ethyl-N-nitrosourea followed by transmission through the mouse germ-line. The approach will be useful for the production of mouse models for human disease-related splice mutations and as a general gene disruption strategy.  相似文献   
1000.
We examined whether nitrogen (N) and carbohydrates reserves allow Veratrum album, an alpine forb, to start spring growth earlier than the neighbouring vegetation and to survive unpredictable disturbances resulting in loss of above-ground biomass. * Seasonal dynamics of plant reserves, soil N availability and vegetation growth were monitored. Veratrum album shoots were experimentally removed when carbohydrate reserves were at a seasonal minimum and the subsequent changes in biomass and reserves were compared with those in control plants. Reserves did not give V. album a competitive advantage in spring; however, they did function as a buffer against the impact of calamities. Shoot removal resulted in significantly lower root dry weight, higher N concentration in rhizome and roots and lower starch concentrations in rhizome and roots but no plant mortality was observed. Veratrum album used stored N reserves to supplement N uptake and establish high leaf N concentrations, which facilitated a rapid refilling of depleted carbohydrate reserves. The primary function of N reserves appears to be to allow V. album to complete the growing cycle in as short a period as possible, thus minimizing exposure to above-ground risks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号