全文获取类型
收费全文 | 1106篇 |
免费 | 65篇 |
国内免费 | 2篇 |
专业分类
1173篇 |
出版年
2022年 | 5篇 |
2021年 | 12篇 |
2019年 | 10篇 |
2018年 | 9篇 |
2017年 | 5篇 |
2016年 | 15篇 |
2015年 | 21篇 |
2014年 | 25篇 |
2013年 | 56篇 |
2012年 | 58篇 |
2011年 | 46篇 |
2010年 | 32篇 |
2009年 | 36篇 |
2008年 | 44篇 |
2007年 | 52篇 |
2006年 | 54篇 |
2005年 | 39篇 |
2004年 | 51篇 |
2003年 | 47篇 |
2002年 | 41篇 |
2001年 | 39篇 |
2000年 | 37篇 |
1999年 | 37篇 |
1998年 | 19篇 |
1997年 | 15篇 |
1996年 | 15篇 |
1995年 | 13篇 |
1994年 | 14篇 |
1993年 | 19篇 |
1992年 | 35篇 |
1991年 | 37篇 |
1990年 | 34篇 |
1989年 | 24篇 |
1988年 | 12篇 |
1987年 | 21篇 |
1986年 | 13篇 |
1985年 | 19篇 |
1984年 | 10篇 |
1983年 | 8篇 |
1982年 | 7篇 |
1981年 | 9篇 |
1979年 | 5篇 |
1977年 | 6篇 |
1976年 | 7篇 |
1975年 | 11篇 |
1974年 | 10篇 |
1973年 | 5篇 |
1972年 | 7篇 |
1971年 | 6篇 |
1968年 | 5篇 |
排序方式: 共有1173条查询结果,搜索用时 15 毫秒
61.
Spray drying is a way to generate protein solids (powders), which is also true for lyophilization. Sugars are used to protect proteins from conformational changes and chemical degradations arising from drying processes and storage conditions such as the humidity. The influence of trehalose and humidity on the conformation and hydration of spray-dried recombinant human granolucyte colony stimulating factor (rhG-CSF) and recombinant consensus interferon-alpha (rConIFN) was investigated using Fourier transform IR spectroscopy. The spectral analysis of spray-dried powders in the amide I region demonstrated that trehalose stabilized the alpha-helical conformation of both rhG-CSF and rConIFN proteins. Exposure of the pure protein powders to 33% relative humidity (RH) resulted in the formation of beta sheets and loss of turns but no change in alpha-helical structure. Trehalose reduced the magnitude of the changes in beta sheets and turns. Exposure of the pure protein powders to 75% RH resulted in the loss of alpha-helical conformation with a corresponding increase in beta structures (beta sheets and turns). Trehalose did not protect proteins from the loss of alpha-helical structures, but it reduced the formation of antiparallel beta sheets. Hydrogen-deuterium exchange (H-D exchange) was used to further characterize these hydration-induced conformational changes. At 33% RH the percent exchange of the protein decreased with increasing trehalose content, indicating a greater protection of the protein from H-D exchange by a higher concentration of trehalose. Such protection correlates with decreased conformational changes of the protein by trehalose at this humidity. At 75% RH the degree of H-D exchange of the protein was insensitive to the powder composition in all powders. Surprisingly, the H-D exchange of trehalose was low at about 20-25%, which was nearly independent of the protein/trehalose ratio and humidity, indicating that the exchangeable protons on trehalose molecules are highly protected in protein-containing powders. The observed protein hydration is related to the effect of trehalose on the conformational changes of the protein under humidity. 相似文献
62.
Nameki N Yoneyama M Koshiba S Tochio N Inoue M Seki E Matsuda T Tomo Y Harada T Saito K Kobayashi N Yabuki T Aoki M Nunokawa E Matsuda N Sakagami N Terada T Shirouzu M Yoshida M Hirota H Osanai T Tanaka A Arakawa T Carninci P Kawai J Hayashizaki Y Kinoshita K Güntert P Kigawa T Yokoyama S 《Protein science : a publication of the Protein Society》2004,13(8):2089-2100
GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins. 相似文献
63.
Tanaka Y Tsumoto K Umetsu M Nakanishi T Yasutake Y Sakai N Yao M Tanaka I Arakawa T Kumagai I 《Biochemical and biophysical research communications》2004,323(1):185-191
This study was carried out to investigate the structural perturbation of the protein's local structure by the denaturants under non-denaturing conditions. Crystal structure of CutA from an archaeon Pyrococcus horikosii (PhoCutA), a heavy-metal binding protein, was determined at 1.6-angstroms resolution in the presence of 3 M guanidine HCl (GdnHCl). Native PhoCutA has a large number of short intramolecular hydrogen bonds and salt bridges on the protein surface, of which greater than 90% of hydrogen bonds and all salt bridges were retained in 3 M GdnHCl. Hydrogen bonds that disappeared in the GdnHCl crystal structure were mainly located on the protein surface, especially around the structurally perturbed loop, suggesting interactions between peptide groups and GdnHCl. Only a few GdnH+ ions were observed in the crystal structure, although none at the surface, of the protein. Two GdnH+ ions were observed in the center of the trimeric structure, replacing water molecules, and were hydrogen bonded with Asp84 and Asp86 of each chain. The exterior loop from Tyr39 to Lys44, including Trp40-Trp41, was perturbed structurally. Decreases in temperature factors were observed in beta strand 5 and the N terminus of helix 3. These results suggest the specific bindings of GdnH+ with some acidic residues and the non-specific bindings around Trp residues and peptide groups on the protein surface and that binding of GdnHCl to the native protein is limited, resulting in local structural perturbation. 相似文献
64.
CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation 总被引:4,自引:0,他引:4 下载免费PDF全文
65.
66.
Chong D.K.X. Roberts W. Arakawa T. Illes K. Bagi G. Slattery C.W. Langridge W.H.R. 《Transgenic research》1997,6(4):289-296
A 1177 bp cDNA fragment encoding the human milk protein -casein was introduced into Solanum tuberosum cells under control of the auxin-inducible, bidirectional mannopine synthase mas12) promoters using Agrobacterium tumefaciens-mediated leaf disc transformation methods. Antibiotic-resistant plants were regenerated and transformants selected based on luciferase activity carried by the expression vector containing the human -casein cDNA. The presence of human -casein cDNA in the plant genome was detected by PCR and DNA hybridization experiments. Human -casein mRNA was identified in leaf tissues of transgenic plants by RT-PCR analysis. Human - casein was identified in auxin-induced leaf and tuber tissues of transformed potato plants by immunoprecipitation and immunoblot analysis. Human -casein produced in transgenic plants migrated in polyacrylamide gels as a single band with an approximate molecular mass of 30 kDa. Immunoblot experiments identified approximately 0.01% of the total soluble protein of transgenic potato leaf tissue as -casein. The above experiments demonstrate the expression of human milk - casein as part of an edible food plant. These findings open the way for reconstitution of human milk inedible plants for replacement of bovine milk in baby foods for general improvement of infant nutrition, and for prevention of gastric and intestinal diseases in children 相似文献
67.
Watanabe T Kobata A Tanigawa T Nadatani Y Yamagami H Watanabe K Tominaga K Fujiwara Y Takeuchi K Arakawa T 《American journal of physiology. Gastrointestinal and liver physiology》2012,303(3):G324-G334
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates innate and adaptive immunity. Recent studies have shown that the activation of TLR-dependent signaling pathways plays important roles in the pathogenesis of ischemia-reperfusion (I/R) injuries in many organs. All TLRs, except TLR3, use a common adaptor protein, MyD88, to transduce activation signals. We investigated the role of MyD88 in I/R injury of the small intestine. MyD88 and cyclooxygenase-2 (COX-2) knockout and wild-type mice were subjected to intestinal I/R injury. I/R-induced small intestinal injury was characterized by infiltration of inflammatory cells, disruption of the mucosal epithelium, destruction of villi, and increases in myeloperoxidase activity and mRNA levels of TNF-α and the IL-8 homolog KC. MyD88 deficiency worsened the severity of I/R injury, as assessed using the histological grading system, measuring luminal contents of hemoglobin (a marker of intestinal bleeding), and counting apoptotic epithelial cells, while it inhibited the increase in mRNA expression of TNF-α and KC. I/R significantly enhanced COX-2 expression and increased PGE(2) concentration in the small intestine of wild-type mice, which were markedly inhibited by MyD88 deficiency. COX-2 knockout mice were also highly susceptible to intestinal I/R injury. Exogenous PGE(2) reduced the severity of injury in both MyD88 and COX-2 knockout mice to the level of wild-type mice. These findings suggest that the MyD88 signaling pathway may inhibit I/R injury in the small intestine by inducing COX-2 expression. 相似文献
68.
Poor aqueous solubility of low molecular weight drug substances hampers their development as pharmacological agents. Here, we have examined the effects of arginine on the solubility of organic compounds, coumarin, caffeine and benzyl alcohol, in aqueous solution. Arginine increased the solubility of aromatic coumarin, but not non-aromatic caffeine, concentration dependently, suggesting the favourable interaction of arginine with the aromatic structure. Consistent with this, arginine also increased the solubility of aromatic benzyl alcohol. Guanidine hydrochloride, urea and salting-in salts increased both coumarin and caffeine solubilities, while salting-out salts decreased them. These results suggest the specific interaction of arginine with aromatic groups, leading to increased solubility of coumarin. However, the effect of 1 M arginine on coumarin solubility was at most approximately 2-fold, which may limit its applications as a solubility enhancing agent. 相似文献
69.
E Yabuuchi Y Kosako H Oyaizu I Yano H Hotta Y Hashimoto T Ezaki M Arakawa 《Microbiology and immunology》1992,36(12):1251-1275
Based on the 16S rRNA sequences, DNA-DNA homology values, cellular lipid and fatty acid composition, and phenotypic characteristics, a new genus Burkholderia is proposed for the RNA homology group II of genus Pseudomonas. Seven species in this group were transferred to the new genus. Thus seven new combinations, Burkholderia cepacia (Palleroni and Holmes 1981), Burkholderia mallei (Zopf 1885), Burkholderia pseudomallei (Whitmore 1913), Burkholderia caryophylli (Burkholder 1942), Burkholderia gladioli (Severini 1913), Burkholderia pickettii (Ralston et al 1973) and Burkholderia solanacearum (Smith 1896) were proposed. 相似文献