首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7214篇
  免费   542篇
  2021年   87篇
  2019年   63篇
  2018年   75篇
  2017年   82篇
  2016年   117篇
  2015年   184篇
  2014年   223篇
  2013年   369篇
  2012年   315篇
  2011年   352篇
  2010年   248篇
  2009年   244篇
  2008年   322篇
  2007年   347篇
  2006年   316篇
  2005年   321篇
  2004年   356篇
  2003年   322篇
  2002年   272篇
  2001年   300篇
  2000年   291篇
  1999年   262篇
  1998年   98篇
  1997年   70篇
  1996年   63篇
  1995年   60篇
  1994年   51篇
  1993年   60篇
  1992年   131篇
  1991年   142篇
  1990年   134篇
  1989年   121篇
  1988年   113篇
  1987年   126篇
  1986年   104篇
  1985年   88篇
  1984年   69篇
  1983年   43篇
  1982年   47篇
  1981年   47篇
  1979年   55篇
  1978年   51篇
  1977年   56篇
  1974年   52篇
  1973年   57篇
  1972年   38篇
  1971年   38篇
  1970年   38篇
  1969年   47篇
  1968年   47篇
排序方式: 共有7756条查询结果,搜索用时 203 毫秒
991.
Docosahexaenoic acid (DHA, 22:6n-3)-containing phospholipids are a ubiquitous component of the central nervous system and retina, however their physiological and pharmacological functions have not been fully elucidated. Here, we report a novel DHA-containing phosphatidylcholine (PC) in a marine single cell eukaryote, Schizochytrium sp. F26-b. Interestingly, 31.8% of all the fatty acid in F26-b is DHA, which is incorporated into triacylglycerols and various phospholipids. In phospholipids, DHA was found to make up about 50% of total fatty acid. To identify phospholipid species containing DHA, the fraction of phospholipids from strain F26-b was subjected to normal phase high-performance liquid chromatography (HPLC). It was found that DHA was incorporated into PC, lyso-PC, phosphatidylethanolamine, and phosphatidylinositol. The major DHA-containing phospholipid was PC in which 32.5% of the fatty acid was DHA. The structure of PC was analyzed further by phospholipase A2 treatment, fast atom bombardment mass spectrometry, and 1H- and 13C-NMR after purification of the PC with reverse phase HPLC. Collectively, it was clarified that the major PC contains pentadecanoic acid (C15:0) at sn-1 and DHA at sn-2; the systematic name of this novel PC is therefore "1-pentadecanoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine."  相似文献   
992.
Hypoxia generated in tumors has been shown to contribute to mutations and genetic instability. However, the molecular mechanisms remain incompletely defined. Since reactive oxygen species (ROS) are overproduced immediately after reoxygenation of hypoxic cells and generate oxidized guanine, we assumed that the mechanisms might involve translesion DNA polymerases that can bypass oxidized guanine. We report here that hypoxia as well as hypoxia mimetics, desferrioxamine, and CoCl(2), enhanced the expression of DNA polymerase iota (pol iota) in human tumor cell lines. Searching the consensus sequence of hypoxia response element to which HIF-1 binds revealed that it locates in the intron 1 of the pol iota gene. These results suggest that HIF-1-mediated pol iota gene expression may be involved in the generation of translesion mutations during DNA replication after hypoxia followed by reoxygenation, thereby contributing to the accumulation of genetic changes in tumor cells.  相似文献   
993.
We previously reported that immature starfish oocytes contain a novel 530-kDa proteasome-associating complex PC500 [previously named PC530; E. Tanaka, M. Takagi Sawada, C. Morinaga, H. Yokosawa, H. Sawada, Isolation and characterization of a novel 530-kDa protein complex (PC 530) capable of associating with the 20S proteasome from star fish oocytes, Arch. Biochem. Biophys. 374 (2000) 181-188]. In the present study, in order to obtain an insight into the biological function of this complex, we investigated the effects of anti-PC500 monoclonal antibodies on oocyte maturation of the starfish Asterina pectinifera. A monoclonal antibody 7C5 strongly inhibited germinal vesicle breakdown (GVBD) in a concentration-dependent manner. In contrast to the inhibitory effect of the 7C5 antibody on GVBD, no inhibition of egg cleavage was observed in a 7C5-antibody-microinjected single blastomere in a 2-cell stage embryo. These results indicate that PC500 plays a key role in starfish oocyte maturation in a meiosis-specific manner.  相似文献   
994.
Furutani Y  Sudo Y  Wada A  Ito M  Shimono K  Kamo N  Kandori H 《Biochemistry》2006,45(39):11836-11843
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronomonas pharaonis. Photoisomerization of the retinal chromophore from all-trans to 13-cis initiates conformational changes of the protein leading to activation of the cognate transducer protein (pHtrII). Elucidation of the initial photoreaction, formation of the K intermediate of ppR, is important for understanding the mechanism of storage of photon energy. We have reported the K minus ppR Fourier transform infrared (FTIR) spectra, including several vibrational bands of the retinal, the protein, and internal water molecules. It is interesting that more vibrational bands were observed in the hydrogen-out-of-plane (HOOP) region than for the light-driven proton pump, bacteriorhodopsin. This result implied that the steric constraints on the retinal chromophore in the binding pocket of ppR are distributed more widely upon formation of the initial intermediate. In this study, we assigned the HOOP and hydrogen-in-plane vibrations by means of low-temperature FTIR spectroscopy applied to ppR reconstituted with retinal deuterated at C7, C8, C10-C12, C14, and C15. As a result, the 966 (+)/971 (-) and 958 (+)/961 (-) cm(-1) bands were assigned to the C7=C8 and C11=C12 Au HOOP modes, respectively, suggesting that the structural changes spread to the middle part of the retinal. The positive bands at 1001, 994, 987, and 979 cm(-1) were assigned to the C15-HOOP vibrations of the K intermediate, whose frequencies are similar to those of the K(L) intermediate of bacteriorhodopsin trapped at 135 K. Another positive band at 864 cm(-1) was assigned to the C14-HOOP vibration. Relatively many positive bands of hydrogen-in-plane vibrations supported the wide distribution of structural changes of the retinal as well. These results imply that the light energy was stored mainly in the distortions around the Schiff base region while some part of the energy was transferred to the distal part of the retinal.  相似文献   
995.
Ishiwata A  Ohta S  Ito Y 《Carbohydrate research》2006,341(10):1557-1573
It has been shown that certain prokaryotes, such as Campylobacter jejuni, have asparagine (Asn)-linked glycoproteins. However, the structures of their glycans are distinct from those of eukaryotic origin. They consist of a bacillosamine residue linked to Asn, an alpha-(1-->4)-GalpNAc repeat, and a branching beta-Glcp residue. In this paper, we describe a strategy for the stereoselective construction of the alpha-(1-->4)-GalpNAc repeat of a C. jejuni N-glycan, utilizing a pentafluoropropionyl (PFP) group as a temporary protective group of the C-4 OH group of the GalpN donor. The strategy was applied to the synthesis of the hexasaccharide alpha-GalpNAc-(1-->4)-alpha-GalpNAc-(1-->4)-[beta-Glcp-(1-->3)]-alpha-GalpNAc(1-->4)-alpha-GalpNAc-(1-->4)-GalpNAc.  相似文献   
996.
Endothelial cells play an important role in terms of biological functions by responding to a variety of stimuli in the blood. However, little is known about the molecular mechanism involved in rendering the variety in the cellular response. To investigate the variety of the cellular responses against exogenous stimuli at the gene expression level, we attempted to describe the cellular responses with comprehensive gene expression profiles, dissect them into multiple response patterns, and characterize the response patterns according to the information accumulated so far on the genes included in the patterns. We comparatively analyzed in parallel the gene expression profiles obtained with DNA microarrays from normal human coronary artery endothelial cells (HCAECs) stimulated with multiple cytokines, interleukin-1β, tumor necrosis factor-, interferon-β, interferon-γ, and oncostatin M, which are profoundly involved in various functional responses of endothelial cells. These analyses revealed that the cellular responses of HCAECs against these cytokines included at least 15 response patterns specific to a single cytokine or common to multiple cytokines. Moreover, we statistically extracted genes contained within the individual response patterns and characterized the response patterns with the genes referring to the previously accumulated findings including the biological process defined by the Gene Ontology Consortium (GO). Out of the 15 response patterns in which at least one gene was successfully extracted through the statistical approach, 11 response patterns were differentially characterized by representing the number of genes contained in individual criteria of the biological process in the GO only. The approach to dissect cellular responses into response patterns and to characterize the pattern at the gene expression level may contribute to the gaining of insight for untangling the diversity of cellular functions.  相似文献   
997.
Nishida T  Orikasa Y  Ito Y  Yu R  Yamada A  Watanabe K  Okuyama H 《FEBS letters》2006,580(11):2731-2735
The colony-forming ability of Escherichia coli genetically engineered to produce eicosapentaenoic acid (EPA) grown in 3mM hydrogen peroxide (H(2)O(2)) was similar to that of untreated cells. It was rapidly lost in the absence of EPA. H(2)O(2)-induced protein carbonylation was enhanced in cells lacking EPA. The fatty acid composition of the transformants was unaffected by H(2)O(2) treatment, but the amount of fatty acids decreased in cultures of cells lacking EPA and increased in cultures of cells producing EPA, suggesting that cellular EPA is stable in the presence of H(2)O(2) in vivo and may protect cells directly against oxidative damage. We discuss the possible role of EPA in partially blocking the penetration of H(2)O(2) into cells through membranes containing EPA.  相似文献   
998.
999.
Brain capillary endothelial cells (BCECs) play an important role in blood-brain barrier (BBB) functions and pathophysiologic mechanisms in brain ischemia and inflammation. We try to suppress gene expression in BCECs by intravenous application of small interfering RNA (siRNA). After injection of large dose siRNA with hydrodynamic technique to mouse, suppression of endogenous protein and the BBB function of BCECs was investigated. The brain-to-blood transport function of organic anion transporter 3 (OAT3) that expressed in BCECs was evaluated by Brain Efflux Index method in mouse. The siRNA could be delivered to BCECs and efficiently inhibited endogenously expressed protein of BCECs. The suppression effect of siRNA to OAT3 is enough to reduce the brain-to-blood transport of OAT3 substrate, benzylpenicillin at BBB. The in vivo siRNA-silencing method with hydrodynamic technique may be useful for the study of BBB function and gene therapy targeting BCECs.  相似文献   
1000.
4-Hydrazinobenzoic acid, an ingredient of mushroom Agaricus bisporus, is carcinogenic to rodents. To clarify the mechanism of carcinogenesis, we investigated DNA damage by 4-hydrazinobenzoic acid using 32P-labeled DNA fragments obtained from the human p53 and p16 tumor suppressor genes. 4-Hydrazinobenzoic acid induced Cu(II)-dependent DNA damage especially piperidine-labile formation at thymine and cytosine residues. Typical hydroxyl radical scavengers showed no inhibitory effects on Cu(II)-mediated DNA damage by 4-hydrazinobenzoic acid. Bathocuproine and catalase inhibited the DNA damage, indicating the participation of Cu(I) and H2O2 in the DNA damage. These findings suggest that H2O2 generated by the autoxidation of 4-hydrazinobenzoic acid reacts with Cu(I) to form reactive oxygen species, capable of causing DNA damage. Interestingly, catalase did not completely inhibit DNA damage caused by a high concentration of 4-hydrazinobenzoic acid (over 50 μM) in the presence of Cu(II). 4-Hydrazinobenzoic acid induced piperidine-labile sites frequently at adenine and guanine residues in the presence of catalase. 4-Hydrazinobenzoic acid increased formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in calf thymus DNA, whereas 4-hydrazinobenzoic acid did not increase the formation of 8-oxodG in the presence of catalase. ESR spin-trapping experiments showed that the phenyl radical was formed during the reaction of 4-hydrazinobenzoic acid in the presence of Cu(II) and catalase. Matrix-assisted laser desorption/ionization time-of-flight mass (MALDI-TOF/mass) spectrometry analysis showed that phenyl radical formed adduct with adenosine and guanosine. These results suggested that 4-hydrazinobenzoic acid induced DNA damage via not only H2O2 production but also phenyl radical production. This study suggests that both oxidative DNA damage and DNA adduct formation play important roles in the expression of carcinogenesis of 4-hydrazinobenzoic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号