首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1910篇
  免费   139篇
  2021年   20篇
  2020年   12篇
  2019年   15篇
  2018年   22篇
  2017年   25篇
  2016年   24篇
  2015年   42篇
  2014年   71篇
  2013年   111篇
  2012年   97篇
  2011年   97篇
  2010年   61篇
  2009年   52篇
  2008年   94篇
  2007年   96篇
  2006年   84篇
  2005年   103篇
  2004年   94篇
  2003年   87篇
  2002年   94篇
  2001年   80篇
  2000年   88篇
  1999年   56篇
  1998年   21篇
  1997年   27篇
  1996年   33篇
  1995年   24篇
  1994年   22篇
  1993年   21篇
  1992年   46篇
  1991年   40篇
  1990年   35篇
  1989年   37篇
  1988年   21篇
  1987年   17篇
  1986年   19篇
  1985年   16篇
  1984年   13篇
  1983年   15篇
  1982年   10篇
  1981年   8篇
  1980年   7篇
  1979年   15篇
  1978年   10篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
  1971年   6篇
  1970年   6篇
  1969年   6篇
排序方式: 共有2049条查询结果,搜索用时 15 毫秒
111.
Total lipid, fatty acids and prostaglandins (PGF(2 alpha) and PGE(2)) in the ovary of kuruma prawns (Marsupenaeus japonicus) were measured during ovarian development. The level of ovarian total lipid increased with an increase in the gonad-somatic index (GSI). No significant difference was found in fatty acid composition among different stages of ovarian development. However, the content of arachidonic acid (precursor of PG(2)), but not eicosapentanoic acid (precursor of PG(3)), was significantly lower at stages I and II than at stage V (P<0.01). When ovarian PGF(2 alpha) and PGE(2) levels were plotted against GSI, no correlation was found in either PG. However, in terms of ovarian developmental stages, the level of ovarian PGs was high (approx. 20 pg/mg) at stage I, followed by marked decreases at stages IV and V (PGF(2 alpha), P<0.01) and stage IV (PGE(2), P<0.01). These results suggest that ovarian PGs and arachidonic acid are deeply involved in ovarian maturation in kuruma prawns.  相似文献   
112.
Brain ischemia induces apoptosis in neuronal cells, but the mechanism is not well understood. When wild-type mice were subjected to bilateral common carotid arteries occlusion (BCCAO) for 15 min, apoptosis-associated morphological changes and appearance of TUNEL-positive cells were observed in the striatum and in the hippocampus at 48 h after occlusion. RT-PCR analysis revealed that mRNAs for ER stress-associated proapoptotic factor CHOP and an ER chaperone BiP are markedly induced at 12 h after BCCAO. Immunohistochemical analysis showed that CHOP protein is induced in nuclei of damaged neurons at 24 h after occlusion. In contrast, ischemia-associated apoptotic loss of neurons was decreased in CHOP(-/-) mice. Primary hippocampal neurons from CHOP(-/-) mice were more resistant to hypoxia-reoxygenation-induced apoptosis than those from wild-type animals. These results indicate that ischemia-induced neuronal cell death is mediated by the ER stress pathway involving CHOP induction.  相似文献   
113.
Liver infection is an obligatory step in malarial transmission, but it remains unclear how the sporozoites gain access to the hepatocytes, which are separated from the circulatory system by the liver sinusoidal cell layer. We found that a novel microneme protein, named sporozoite microneme protein essential for cell traversal (SPECT), is produced by the liver-infective sporozoite of the rodent malaria parasite, Plasmodium berghei. Targeted disruption of the spect gene greatly reduced sporozoite infectivity to the liver. In vitro cell invasion assays revealed that these disruptants can infect hepatocytes normally but completely lack their cell passage ability. Their apparent liver infectivity was, however, restored by depletion of Kupffer cells, hepatic macrophages included in the sinusoidal cell layer. These results show that malarial sporozoites access hepatocytes through the liver sinusoidal cell layer by cell traversal motility mediated by SPECT and strongly suggest that Kupffer cells are main routes for this passage. Our findings may open the way for novel malaria transmission-blocking strategies that target molecules involved in sporozoite migration to the hepatocyte.  相似文献   
114.
Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Entry of this virus into cells is primarily determined by host cellular trypsin-type processing proteases, which proteolytically activate viral membrane fusion glycoprotein precursors. Human IAV and murine parainfluenza virus type 1 Sendai virus are exclusively pneumotropic, and the infectious organ tropism of these viruses is determined by the susceptibility of the viral envelope glycoprotein to cleavage by proteases in the airway. Proteases in the upper respiratory tract are suppressed by secretory leukoprotease inhibitor, and those in the lower respiratory tract are suppressed by pulmonary surfactant, which by adsorption inhibits the interaction between the proteases and viral membrane proteins. Although the protease activities are predominant over the activities of inhibitory compounds under normal airway conditions, intranasal administration of inhibitors was able to significantly suppress multi-cycles of viral replication in the airway. In addition, we identified chemical agents that could act as defensive factors by up-regulating the levels of the natural inhibitors and immunoglobulin A (IgA) in airway fluids. One of these compounds, ambroxol, is a mucolytic and anti-oxidant agent that stimulates the release of secretory leukoprotease inhibitor and pulmonary surfactant in the early phase, and IgA in the late phase of infection at an optimal dose, i.e. a dose sufficient to inhibit virus proliferation and increase the survival rate of animals after treatment with a lethal dose of IAV. Another agent, clarithromycin, is a macrolide antibiotic that increases IgA levels through augmentation of interleukin-12 levels and mucosal immunization in the airway. In addition to the sialidase inhibitors, which prevent the release of IAV from infected cells, inhibitors of the processing proteases and chemical agents that augment mucosal immunity and/or levels of the relevant defensive compounds may also ultimately prove to be useful as new anti-influenza agents.  相似文献   
115.
The eukaryotic 20S proteasome is the multifunctional catalytic core of the 26S proteasome, which plays a central role in intracellular protein degradation. Association of the 20S core with a regulatory subcomplex, termed PA700 (also known as the 19S cap), forms the 26S proteasome, which degrades ubiquitinated and nonubiquitinated proteins through an ATP-dependent process. Although proteolytic assistance by this regulatory particle is a general feature of proteasome-dependent turnover, the 20S proteasome itself can degrade some proteins directly, bypassing ubiquitination and PA700, as an alternative mechanism in vitro. The mechanism underlying this pathway is based on the ability of the 20S proteasome to recognize partially unfolded proteins. Here we show that the 20S proteasome recognizes the heat-denatured forms of model proteins such as citrate synthase, malate dehydrogenase. and glyceraldehydes-3-phosphate dehydrogenase, and prevents their aggregation in vitro. This process was not followed by the refolding of these denatured substrates into their native states, whereas PA700 or the 26S proteasome generally promotes their reactivation. These results indicate that the 20S proteasome might play a role in maintaining denatured and misfolded substrates in a soluble state, thereby facilitating their refolding or degradation.  相似文献   
116.
A series of novel 6-methylene-bridged uracil derivatives have been optimized for clinical use as the inhibitors of human thymidine phosphorylase (TP). We describe their synthesis and evaluation. Introduction of a guanidino or an amidino group enhanced the in vitro inhibitory activity of TP comparing with formerly reported inhibitor 1. Their selectivity for TP based on uridine phosphorylase inhibitory activity was also evaluated. Compound 2 (TPI) has been selected for clinical evaluation based on its strong TP inhibition and excellent modulation of 2'-deoxy-5-(trifluoromethyl)uridine (F(3)dThd) pharmacokinetics. As a result, TAS-102 (a combination of F(3)dThd and TPI) is currently in phase 1 clinical studies.  相似文献   
117.
The NADH-quinone oxidoreductase from Paracoccus denitrificans consists of 14 subunits (Nqo1-14) and contains one FMN and eight iron-sulfur clusters. The Nqo3 subunit possesses fully conserved 11 Cys and 1 His in its N-terminal region and is considered to harbor three iron-sulfur clusters; however, only one binuclear (N1b) and one tetranuclear (N4) were previously identified. In this study, the Nqo3 subunit containing 1x[2Fe-2S] and 2x[4Fe-4S] clusters was expressed in Escherichia coli. The second [4Fe-4S](1+) cluster is detected by EPR spectroscopy below 6 K, exhibiting very fast spin relaxation. The resolved EPR spectrum of this cluster is broad and nearly axial. The subunit exhibits an absorption-type EPR signal around g approximately 5 region below 6 K, most likely arising from an S = 3/2 ground state of the fast-relaxing [4Fe-4S](1+) species. The substitution of the conserved His(106) with Cys specifically affected the fast-relaxing [4Fe-4S](1+) cluster, suggesting that this cluster is coordinated by His(106). In the cholate-treated NDH-1-enriched P. denitrificans membranes, we observed EPR signals arising from a [4Fe-4S] cluster below 6 K, exhibiting properties similar to those of cluster N5 detected in other complex I/NDH-1 and of the fast-relaxing [4Fe-4S](1+) cluster in the expressed Nqo3 subunit. Hence, we propose that the His-coordinated [4Fe-4S] cluster corresponds to cluster N5.  相似文献   
118.
119.
GCP170, a member of the golgin family associated with the cytoplasmic face of the Golgi membrane, was found to have a Golgi localization signal at the NH2-terminal region (positions 137-237). Using this domain as bait in the yeast two-hybrid screening system, we identified a novel protein that interacted with GCP170. The 2.0-kilobase mRNA encoding a 137-amino acid protein of 16 kDa designated GCP16 was ubiquitously expressed. Immunofluorescence microscopy showed that GCP16 was co-localized with GCP170 and giantin in the Golgi region. Despite the absence of a hydrophobic domain sufficient for participating in membrane localization, GCP16 was found to be tightly associated with membranes like an integral membrane protein. Labeling experiments with [3H]palmitic acid and mutational analysis demonstrated that GCP16 was acylated at Cys69 and Cys72, accounting for its tight association with the membrane. A mutant without potential acylation sites (C69A/C72A) was no longer localized to the Golgi, indicating that the acylation is prerequisite for the Golgi localization of GCP16. Although the mutant GCP16, even when overexpressed, had no effect on protein transport, overexpression of the wild type GCP16 caused an inhibitory effect on protein transport from the Golgi to the cell surface. Taken together, these results indicate that GCP16 is the acylated membrane protein, associated with GCP170, and possibly involved in vesicular transport from the Golgi to the cell surface.  相似文献   
120.
Most mitochondrial preproteins are maintained in a loosely folded import-competent conformation by cytosolic chaperones, and are imported into mitochondria by translocator complexes containing a preprotein receptor, termed translocase of the outer membrane of mitochondria (Tom) 20. Using two-hybrid screening, we identified arylhydrocarbon receptor-interacting protein (AIP), an FK506-binding protein homologue, interacting with Tom20. The extreme COOH-terminal acidic segment of Tom20 was required for interaction with tetratricopeptide repeats of AIP. An in vitro import assay indicated that AIP prevents preornithine transcarbamylase from the loss of import competency. In cultured cells, overexpression of AIP enhanced preornithine transcarbamylase import, and depletion of AIP by RNA interference impaired the import. An in vitro binding assay revealed that AIP specifically binds to mitochondrial preproteins. Formation of a ternary complex of Tom20, AIP, and preprotein was observed. Hsc70 was also found to bind to AIP. An aggregation suppression assay indicated that AIP has a chaperone-like activity to prevent substrate proteins from aggregation. These results suggest that AIP functions as a cytosolic factor that mediates preprotein import into mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号