首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   12篇
  2024年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   20篇
  2012年   9篇
  2011年   21篇
  2010年   8篇
  2009年   9篇
  2008年   24篇
  2007年   24篇
  2006年   22篇
  2005年   30篇
  2004年   21篇
  2003年   21篇
  2002年   23篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   9篇
  1991年   3篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1965年   1篇
  1935年   1篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
131.
Cyclooxygenase-2 (COX-2) mediates various inflammatory responses and is expressed in pancreatic tissue from patients with chronic pancreatitis. To examine the role of COX-2 in chronic pancreatitis, we investigated its participation in regulating functions of pancreatic stellate cells (PSCs), using isolated rat PSCs. COX-2 was expressed in culture-activated PSCs but not in freshly isolated quiescent PSCs. TGF-1, IL-1, and IL-6 enhanced COX-2 expression in activated PSCs, concomitantly increasing the expression of -smooth muscle actin (-SMA), a parameter of PSC activation. The COX-2 inhibitor NS-398 blocked culture activation of freshly isolated quiescent PSCs. NS-398 also inhibited the enhancement of -SMA expression by TGF-1, IL-1, and IL-6 in activated PSCs. These data indicate that COX-2 is required for the initiation and promotion of PSC activation. We further investigated the mechanism by which cytokines enhance COX-2 expression in PSCs. Adenovirus-mediated expression of dominant negative Smad2/3 inhibited the increase in expression of COX-2, -SMA, and collagen-1 mediated by TGF-1 in activated PSCs. Moreover, dominant negative Smad2/3 expression attenuated the expression of COX-2 and -SMA enhanced by IL-1 and IL-6. Anti-TGF- neutralizing antibody also attenuated the increase in COX-2 and -SMA expression caused by IL-1 and IL-6. IL-6 as well as IL-1 enhanced TGF-1 secretion from PSCs. These data indicate that Smad2/3-dependent pathway plays a central role in COX-2 induction by TGF-1, IL-1, and IL-6. Furthermore, IL-1 and IL-6 promote PSC activation by enhancing COX-2 expression indirectly through Smad2/3-dependent pathway by increasing TGF-1 secretion from PSCs. transforming growth factor-; interleukin; Smad; autocrine; pancreatic fibrosis  相似文献   
132.
Hepatocyte growth factor (HGF) can promote the regeneration of injured organs, including HGF gene therapy by electroporation (EP) for liver injury. In this study, we investigated the effect of HGF on dextran sulfate sodium-induced colitis and tried to clarify the regenerative mechanisms of colonic epithelial cells and the signaling pathway involved. Colitis was induced by dextran sulfate sodium in mice, together with HGF gene transfer by EP. On day 10, the colitis was evaluated histologically and by Western blot analysis. The colonic epithelial cell line MCE301 was exposed to HGF protein, and its proliferation and activated signaling pathway were analyzed. In vivo, the histological score improved and the number of Ki-67-positive epithelial cells increased in the HGF-treated mice compared with the controls. Western blot analysis showed enhanced expression of phospho-Akt in the HGF-treated mice compared with the controls. In vitro, HGF stimulated the proliferation of MCE301 cells. There was enhanced phospho-Akt expression for more than 48 h after HGF stimulation, although phospho-ERK1/2 was enhanced for only 10 min. LY-294002 or Akt small interfering RNA suppressed cell proliferation induced by HGF. Thus HGF induces the proliferation of colonic epithelial cells via the phosphatidylinositol 3-kinase/Akt signaling pathway. HGF gene therapy can attenuate acute colitis via epithelial cell proliferation through the PI3K/Akt pathway. These data suggested that HGF gene therapy by EP may be effective for the regeneration and repair of injured epithelial cells in inflammatory bowel disease.  相似文献   
133.
Osteonecrosis of the jaw (ONJ), an uncommon co-morbidity in patients treated with bisphosphonates (BP), occurs in the segment of jawbone interfacing oral mucosa. This study aimed to investigate a role of oral mucosal barrier γδ T cells in the pathogenesis of ONJ. Female C57Bl/6J (B6) mice received a bolus zoledronate intravenous injection (ZOL, 540 μg/kg), and their maxillary left first molars were extracted 1 week later. ZOL-treated mice (WT ZOL) delayed oral wound healing with patent open wounds 4 weeks after tooth extraction with characteristic oral epithelial hyperplasia. γδ T cells appeared within the tooth extraction site and hyperplastic epithelium in WT ZOL mice. In ZOL-treated γδ T cell null (Tcrd−/− ZOL) mice, the tooth extraction open wound progressively closed; however, histological ONJ-like lesions were identified in 75 and 60% of WT ZOL and Tcrd−/− ZOL mice, respectively. Although the bone exposure phenotype of ONJ was predominantly observed in WT ZOL mice, Tcrd−/− ZOL mice developed the pustule/fistula disease phenotype. We further addressed the role of γδ T cells from human peripheral blood (h-γδ T cells). When co-cultured with ZOL-pretreated human osteoclasts in vitro, h-γδ T cells exhibited rapid expansion and robust IFN-γ secretion. When h-γδ T cells were injected into ZOL-treated immunodeficient (Rag2−/− ZOL) mice, the oral epithelial hyperplasia developed. However, Rag2−/− ZOL mice did not develop osteonecrosis. The results indicate that γδ T cells are unlikely to influence the core osteonecrosis mechanism; however, they may serve as a critical modifier contributing to the different oral mucosal disease variations of ONJ.  相似文献   
134.
Four cDNA clones (SlArf/Xyl1‐4) encoding α‐l ‐arabinofuranosidase/β‐xylosidase belonging to glycoside hydrolase family 3 were obtained from tomato (Solanum lycopersicum) fruit. SlArf/Xyl1 was expressed in various organs. Its level was particularly high in flower and leaves but low in fruit. SlArf/Xyl3 was highly expressed in flower. On the contrary, SlArf/Xyl2 and 4 were expressed in early developmental stage in various organs. Comparison with SlArf/Xyl4, SlArf/Xyl2 expression was observed in earlier stages. The active recombinant proteins were obtained by using BY‐2 tobacco (Nicotiana tabacum) suspension cultured cells. The SlArf/Xyl1 and 2 recombinant proteins showed a bi‐functional activity of α‐l ‐arabinofuranosidase/β‐xylosidase while the SlArf/Xyl4 protein possessed a β‐xylosidase activity predominantly. Neither enzyme activities were detected for the SlArf/Xyl3 protein under the same conditions. Although SlArf/Xyl2 possessed a bi‐functional activity, it preferentially hydrolyzed arabinosyl residues from tomato hemicellulosic polysaccharides. Antisense suppression of SlArf/Xyl2 resulted in no apparent changes in the enzyme activities, monosaccharide composition or fruit phenotype. Increment of a family 51 α‐l ‐arabinofuranosidase expression rather than that of family 3 resulted in a restoring the activity in SlArf/Xyl2‐suppressed fruit. The ability of recombinant SlArf/Xyl2 to hydrolyze both arabinan and arabinoxylan is nearly identical to that of α‐l ‐arabinofuranosidases belonging to family 51. Our results suggested that BY‐2 cells are a useful expression system for obtaining active cell wall hydrolyzing enzymes. In addition, an α‐l ‐arabinofuranosidase activity derived from SlArf/Xyl2 would be essential in young organ development and the action of the enzyme could be restored by the other enzyme belonging to a different family under a defective condition.  相似文献   
135.
Cohesion is essential for the identification of sister chromatids and for the biorientation of chromosomes until their segregation. Here, we have demonstrated that an RNA-binding motif protein encoded on the X chromosome (RBMX) plays an essential role in chromosome morphogenesis through its association with chromatin, but not with RNA. Depletion of RBMX by RNA interference (RNAi) causes the loss of cohesin from the centromeric regions before anaphase, resulting in premature chromatid separation accompanied by delocalization of the shugoshin complex and outer kinetochore proteins. Cohesion defects caused by RBMX depletion can be detected as early as the G2 phase. Moreover, RBMX associates with the cohesin subunits, Scc1 and Smc3, and with the cohesion regulator, Wapl. RBMX is required for cohesion only in the presence of Wapl, suggesting that RBMX is an inhibitor of Wapl. We propose that RBMX is a cohesion regulator that maintains the proper cohesion of sister chromatids.  相似文献   
136.
The 78-kDa glucose-regulated protein (GRP78) is an important molecular chaperone in the endoplasmic reticulum (ER) induced by various stresses. This study showed that stimulation with anti-CD3 mAb, PMA plus ionomycin, or an antigen increased the levels of GRP78 mRNA in primary T cells, which was inhibited by Ca2+ chelators EGTA and BAPTA-AM and by an inhibitor of calcineurin FK506. In addition, the specific knockdown of GRP78 protein expression induced apoptosis in mouse EL-4 T cell line associated with CHOP induction and caspase-3 activation. Furthermore, overexpression of GRP78 inhibited PMA/ionomycin-induced cell death in EL-4 cells. Collectively, GRP78 expression is induced by TCR activation via a Ca2+-dependent pathway and may play a critical role in maintaining T cell viability in the steady and TCR-activated states. These results suggest a novel regulatory mechanism and an essential function of GRP78 in T cells.  相似文献   
137.
Amin MA  Matsunaga S  Uchiyama S  Fukui K 《FEBS letters》2008,582(27):3839-3844
Nucleophosmin (NPM) is an abundantly expressed multifunctional nucleolar phosphoprotein. Here we show that depletion of NPM by RNA interference causes defects in cell division, followed by an arrest of DNA synthesis due to activation of a p53-dependent checkpoint response in HeLa cells. Depletion of NPM leads to mitotic arrest due to spindle checkpoint activation. The mitotic cells arrested by NPM depletion have defects in chromosome congression, proper mitotic spindle and centrosome formation, as well as defects in kinetochore-microtubule attachments. Loss of NPM thus causes severe mitotic defects and delayed mitotic progression. These findings indicate that NPM is essential for mitotic progression and cell proliferation.  相似文献   
138.
Tight junctions (TJs) are cell-cell adhesive structures that undergo continuous remodeling. We previously demonstrated that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) localized at TJs and mediated the endocytic recycling of the integral TJ protein occludin and the formation of functional TJs. Here, we investigated how JRAB/MICAL-L2 was targeted to TJs. Using a series of deletion mutants, we found the plasma membrane (PM)-targeting domain within JRAB/MICAL-L2. We then identified actinin-4, which was originally isolated as an actin-binding protein associated with cell motility and cancer invasion/metastasis, as a binding protein for the PM-targeting domain of JRAB/MICAL-L2, using a yeast two-hybrid system. Actinin-4 was colocalized with JRAB/MICAL-L2 at cell-cell junctions and linked JRAB/MICAL-L2 to F-actin. Although actinin-4 bound to JRAB/MICAL-L2 without Rab13, the actinin-4-JRAB/MICAL-L2 interaction was enhanced by Rab13 activation. Depletion of actinin-4 by using small interfering RNA inhibited the recruitment of occludin to TJs during the Ca(2+) switch. During the epithelial polarization after replating, JRAB/MICAL-L2 was recruited from the cytosol to cell-cell junctions. This JRAB/MICAL-L2 recruitment as well as the formation of functional TJs was delayed in actinin-4-depleted cells. These results indicate that actinin-4 is involved in recruiting JRAB/MICAL-L2 to cell-cell junctions and forming functional TJs.  相似文献   
139.
The proper segregation of chromosomes during mitosis is required for accurate distribution of genetic information by two daughter cells. Here, we used live cell imaging of microtubules and kinetochores after treatment with an Aurora kinase inhibitor, hesperadin, in tobacco BY-2 cells to analyze the function of plant Aurora kinase during mitosis. Hesperadin treatment induced the delay of CenH3 alignment on the spindle equator. Furthermore, two types of dynamics of lagging CenH3s were observed during chromosome segregation. The findings indicate that the plant Aurora kinase has dual roles; correction of aberrant kinetochore-microtubule attachment and dissociation of cohesin during chromosome alignment and segregation.  相似文献   
140.
The effect of mating disruption by the ground-surface application of 2-cm-long dispensers (mini-dispensers) of 2-butanol against the white grub beetle Dasylepida ishigakiensis Niijima et Kinoshita (Coleoptera: Scarabaeidae) was examined in sugarcane fields on the Miyako Island, Okinawa, Japan. Mating rates and male catches with sex pheromone traps were reduced to a low level comparable to that obtained from a conventional method in which rope dispensers (25 m) were hung at a height of ca. 30 cm along the sugarcane ridges. Both mating rates and male catches were reduced with increasing number of treated mini-dispensers. These results suggest that by using mini-dispensers the amounts of synthetic sex pheromone and plastic resin can be reduced to 1/10–1/5 and 1/6–1/3, respectively, of their conventional application with rope-type dispensers, without impairing the efficiency of mating disruption in this beetle. Furthermore, the amount of labor required for the application of this method is expected to be greatly reduced compared to the rope-type dispenser method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号