首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4349篇
  免费   283篇
  国内免费   6篇
  2024年   4篇
  2023年   15篇
  2022年   30篇
  2021年   93篇
  2020年   48篇
  2019年   80篇
  2018年   114篇
  2017年   105篇
  2016年   171篇
  2015年   212篇
  2014年   274篇
  2013年   315篇
  2012年   385篇
  2011年   393篇
  2010年   210篇
  2009年   208篇
  2008年   306篇
  2007年   255篇
  2006年   191篇
  2005年   188篇
  2004年   181篇
  2003年   185篇
  2002年   141篇
  2001年   125篇
  2000年   107篇
  1999年   76篇
  1998年   34篇
  1997年   20篇
  1996年   31篇
  1995年   17篇
  1994年   13篇
  1993年   12篇
  1992年   26篇
  1991年   25篇
  1990年   10篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有4638条查询结果,搜索用时 15 毫秒
241.
Kim SI  Kim JY  Kim EA  Kwon KH  Kim KW  Cho K  Lee JH  Nam MH  Yang DC  Yoo JS  Park YM 《Proteomics》2003,3(12):2379-2392
As an initial step to the comprehensive proteomic analysis of Panax ginseng C. A. Meyer, protein mixtures extracted from the cultured hairy root of Panax ginseng were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). The protein spots were analyzed and identified by peptide finger printing and internal amino acid sequencing by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS), respectively. More than 300 protein spots were detected on silver stained two-dimensional (2-D) gels using pH 3-10, 4-7, and 4.5-5.5 gradients. Major protein spots (159) were analyzed by peptide fingerprinting or de novo sequencing and the functions of 91 of these proteins were identified. Protein identification was achieved using the expressed sequence tag (EST) database from Panax ginseng and the protein database of plants like Arabidopsis thaliana and Oryza sativa. However, peptide mass fingerprinting by MALDI-TOF MS alone was insufficient for protein identification because of the lack of a genome database for Panax ginseng. Only 17 of the 159 protein spots were verified by peptide mass fingerprinting using MALDI-TOF MS whereas 87 out of 102 protein spots, which included 13 of the 17 proteins identified by MALDI-TOF MS, were identified by internal amino acid sequencing using tandem mass spectrometry analysis by ESI Q-TOF MS. When the internal amino acid sequences were used as identification markers, the identification rate exceeded 85.3%, suggesting that a combination of internal sequencing and EST data analysis was an efficient identification method for proteome analysis of plants having incomplete genome data like ginseng. The 2-D patterns of the main root and leaves of Panax ginseng differed from that of the cultured hairy root, suggesting that some proteins are exclusively expressed by different tissues for specific cellular functions. Proteome analysis will undoubtedly be helpful for understanding the physiology of Panax ginseng.  相似文献   
242.
AIMS: In this study, bacteriocidal effects of cinnamic aldehyde on Bacillus cereus were investigated. METHODS: The bacterial culture or cell suspension in 0.85% NaCl was treated with cinnamic aldehyde at a concentration of 0.3 ml l(-1). Viable cells were counted on a nutrient agar plate. Protein leakage from the cell was determined using a protein dye. Cell morphology was observed using a scanning electron microscope. RESULTS: Bacillus cereus cells were the most sensitive to cinnamic aldehyde among four different food-borne pathogens. When the cells were treated with 0.3 ml l(-1) of cinnamic aldehyde, the viable counts decreased about 6 log cycles after 6 h of incubation. The bacterial cells remained unlysed although they were killed by cinnamic aldehyde. Treatment of cinnamic aldehyde to the exponential phase cells resulted in no significant protein leakage but strong inhibition of cell separation. CONCLUSIONS: The present findings suggest that cinnamic aldehyde exhibits bacteriocidal effects and inhibition of cell separation on B. cereus. SIGNIFICANCE AND IMPACT OF THE STUDY: These data represent an interesting background for a possible mechanism for antibacterial effects of cinnamic aldehyde.  相似文献   
243.
Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wild-type PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathways.  相似文献   
244.
Effects of 20-hydroxyecdysone and serotonin on the morphological development and the survival of antennal lobe neurons from day-2 pupal brains of the silk moth Bombyx mori were investigated in vitro. Four morphologically distinct neuronal types could be identified in the cultured antennal lobe neurons: unipolar, bipolar, multi-polar and projection neurons. Antennal lobe neurons in culture with 20-hydroxyecdysone and serotonin showed different patterns of the morphological development from those described in Manduca sexta. Projection neurons extend their neurites remarkably by 20-hydroxyecdysone in B. mori, but there is no extension from antennal lobe neurons in M. sexta. Multi-polar neurons conspicuously increase only formation of new branches from their primary neurites by serotonin in B. mori, but there are both extension and branching of the neurites in M. sexta. On day-5, antennal lobe neurons in lower titers of 20-hydroxyecdysone had significantly higher survival rates than those in higher titers. Neurons cultured for 7 days at different levels of 20-hydroxyecdysone generally showed significantly lower survival rates than neurons cultured for 5 days under the same conditions.  相似文献   
245.
Previous studies indicated that antigen receptor (TcR) stimulation of mature T cells induced rapid generation of reactive oxygen species (ROS). The goal of the current study was to examine the role(s) of ROS in TcR signal transduction, with a focus upon the redox-sensitive MAPK family. TcR cross-linking of primary human T blasts and Jurkat human T cells rapidly activated the ERK, JNK, p38 and Akt kinases within minutes, and was temporally associated with TcR-stimulated production of hydrogen peroxide (H(2)O(2)). TcR-induced activation of ERK was selectively augmented and sustained in the presence of pharmacologic antioxidants that can quench or inhibit H(2)O(2) production (NAC, MnTBAP and Ebselen, but not DPI), while activation of JNK and Akt were largely unaffected. This was paralleled by concurrent changes in MEK1/2 phosphorylation, suggesting that ROS acted upstream of MEK-ERK activation. Molecular targeting of H(2)O(2) by overexpression of peroxiredoxin II, a thioredoxin dependent peroxidase, also increased and sustained ERK and MEK activation upon TcR cross-linking. Enhancement of ERK phosphorylation by antioxidants correlated with increased and sustained serine phosphorylation of the src-family kinase lck, a known ERK substrate. Thus, the data suggest that TcR-stimulated production of hydrogen peroxide negatively feeds back to dampen antigen-stimulated ERK activation and this redox-dependent regulation may serve to modulate key steps in TcR signaling.  相似文献   
246.
The discovery of aquaporin-1 (AQP1) by Agre and colleagues explained the long-standing biophysical question of how water specifically crosses biological membranes. These studies led to the discovery and identification of a whole new family of membrane proteins, the aquaporins. At present, at least seven aquaporins are expressed at distinct sites in the kidney and 4 members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. Osmotic equilibration via renal aquaporins is maintained by active transport of NaCl. The major sodium transporters and channels in the individual renal tubule segments have been identified and the regulation of these transporters and channels are fundamental for renal sodium reabsorption and for establishing the driving force. In this mini-review the role of renal aquaporins and sodium transporters and channels is briefly described and their key role for the impaired urinary concentrating capacity in response to urinary tract obstruction is reviewed. Thus this review updates previous detailed reviews (1-5).  相似文献   
247.
In our continuing efforts to identify small molecule vitronectin receptor antagonists, we have discovered a series of phenylbutyrate derivatives, exemplified by 16, which have good potency and excellent oral bioavailability (approximately 100% in rats). This new series is derived conceptually from opening of the seven-membered ring of SB-265123.  相似文献   
248.
249.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   
250.
Although nitric oxide (NO) plays key signaling roles in the nervous systems, excess NO leads to cell death. In this study, the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and apoptosis signal-regulating kinase-1 (ASK1) in NO-induced cell death was investigated in PC12 cells. NO donor transiently activated p38 MAPK in the wild type parental PC12 cells, whereas the p38 MAPK activation was abolished in NO-resistant PC12 cells (PC12-NO-R). p38 MAPK inhibitors protected the cells against NO-induced death, whereas the inhibitors were not significantly protective against the cytotoxicity of reactive oxygen species. Stable transfection with dominant negative p38 MAPK mutant reduced NO-induced cell death. Stable transfection with dominant negative mutant of ASK1 attenuated NO-stimulated activation of p38 MAPK and decreased NO-induced cell death. These results suggest that p38 MAPK and its upstream regulator ASK1 are involved in NO-induced PC12 cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号