首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   38篇
  国内免费   1篇
  642篇
  2023年   5篇
  2022年   4篇
  2021年   4篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   11篇
  2014年   31篇
  2013年   28篇
  2012年   31篇
  2011年   29篇
  2010年   14篇
  2009年   23篇
  2008年   36篇
  2007年   22篇
  2006年   27篇
  2005年   25篇
  2004年   26篇
  2003年   25篇
  2002年   21篇
  2001年   21篇
  2000年   17篇
  1999年   8篇
  1998年   12篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   12篇
  1991年   6篇
  1990年   14篇
  1989年   15篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   21篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   4篇
  1979年   8篇
  1978年   8篇
  1977年   5篇
  1976年   6篇
  1975年   3篇
  1973年   4篇
  1971年   4篇
  1970年   3篇
  1926年   3篇
排序方式: 共有642条查询结果,搜索用时 9 毫秒
81.
Chen H  Kihara D 《Proteins》2011,79(1):315-334
Computational protein structure prediction remains a challenging task in protein bioinformatics. In the recent years, the importance of template-based structure prediction is increasing because of the growing number of protein structures solved by the structural genomics projects. To capitalize the significant efforts and investments paid on the structural genomics projects, it is urgent to establish effective ways to use the solved structures as templates by developing methods for exploiting remotely related proteins that cannot be simply identified by homology. In this work, we examine the effect of using suboptimal alignments in template-based protein structure prediction. We showed that suboptimal alignments are often more accurate than the optimal one, and such accurate suboptimal alignments can occur even at a very low rank of the alignment score. Suboptimal alignments contain a significant number of correct amino acid residue contacts. Moreover, suboptimal alignments can improve template-based models when used as input to Modeller. Finally, we use suboptimal alignments for handling a contact potential in a probabilistic way in a threading program, SUPRB. The probabilistic contacts strategy outperforms the partly thawed approach, which only uses the optimal alignment in defining residue contacts, and also the re-ranking strategy, which uses the contact potential in re-ranking alignments. The comparison with existing methods in the template-recognition test shows that SUPRB is very competitive and outperforms existing methods.  相似文献   
82.
83.
To obtain insight into the mechanism of fibril formation, we examined the effects of ultrasonication, a strong agitator, on beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis. Upon sonication of an acid-unfolded beta2-m solution at pH 2.5, thioflavin T fluorescence increased markedly after a lag time of 1-2 h with a simultaneous increase of light scattering. Atomic force microscopy images showed the formation of a large number of short fibrils 3 nm in diameter. When the sonication-induced fibrils were used as seeds in the next seeding experiment at pH 2.5, a rapid and intense formation of long fibrils 3 nm in diameter was observed demonstrating seed-dependent fibril growth. We then examined the effects of sonication on the native beta2-m at neutral pH, conditions under which amyloid deposits occur in patients. In the presence of 0.5 mm sodium dodecyl sulfate, a model compound of potential trigger and stabilizer of amyloid fibrils in patients, a marked increase of thioflavin T fluorescence was observed after 1 day of sonication at pH 7.0. The products of sonication caused the accelerated fibril formation at pH 7.0. Atomic force microscopy images showed that the fibrils formed at pH 7.0 have a diameter of more than 7 nm, thicker than those prepared at pH 2.5. These results indicate that ultrasonication is one form of agitation triggering the formation of amyloid fibrils of beta2-m, producing fibrils adapted to the respective pH.  相似文献   
84.
Investigation of factors that modulate amyloid formation of proteins is important to understand and mitigate amyloid-related diseases. To understand the role of electrostatic interactions and the effect of ionic cosolutes, especially anions, on amyloid formation, we have investigated the effect of salts such as NaCl, NaI, NaClO(4), and Na(2)SO(4) on the amyloid fibril growth of beta(2)-microglobulin, the protein involved in dialysis-related amyloidosis. Under acidic conditions, these salts exhibit characteristic optimal concentrations where the fibril growth is favored. The presence of salts leads to an increase in hydrophobicity of the protein as reported by 8-anilinonaphthalene-1-sulfonic acid, indicating that the anion interaction leads to the necessary electrostatic and hydrophobic balance critical for amyloid formation. However, high concentrations of salts tilt the balance to high hydrophobicity, leading to partitioning of the protein to amorphous aggregates. Such amorphous aggregates are not competent for fibril growth. The order of anions based on the lowest concentration at which fibril formation is favored is SO(4)(2)(-) > ClO(4)(-) > I(-) > Cl(-), consistent with the order of their electroselectivity series, suggesting that preferential anion binding, rather than general ionic strength effect, plays an important role in the amyloid fibril growth. Anion binding is also found to stabilize the amyloid fibrils under acidic condition. Interestingly, sulfate promotes amyloid growth of beta(2)-microglobulin at pH between 5 and 6, closer to its isoelectric point. Considering the earlier studies on the role of glycosaminoglycans and proteoglycans (i.e., sulfated polyanions) on amyloid formation, our study suggests that preferential interaction of sulfate ions with amyloidogenic proteins may have biological significance.  相似文献   
85.
La D  Kihara D 《Proteins》2012,80(1):126-141
Protein-protein binding events mediate many critical biological functions in the cell. Typically, functionally important sites in proteins can be well identified by considering sequence conservation. However, protein-protein interaction sites exhibit higher sequence variation than other functional regions, such as catalytic sites of enzymes. Consequently, the mutational behavior leading to weak sequence conservation poses significant challenges to the protein-protein interaction site prediction. Here, we present a phylogenetic framework to capture critical sequence variations that favor the selection of residues essential for protein-protein binding. Through the comprehensive analysis of diverse protein families, we show that protein binding interfaces exhibit distinct amino acid substitution as compared with other surface residues. On the basis of this analysis, we have developed a novel method, BindML, which utilizes the substitution models to predict protein-protein binding sites of protein with unknown interacting partners. BindML estimates the likelihood that a phylogenetic tree of a local surface region in a query protein structure follows the substitution patterns of protein binding interface and nonbinding surfaces. BindML is shown to perform well compared to alternative methods for protein binding interface prediction. The methodology developed in this study is very versatile in the sense that it can be generally applied for predicting other types of functional sites, such as DNA, RNA, and membrane binding sites in proteins.  相似文献   
86.
External alkalization activates the Rim101 pathway in Saccharomyces cerevisiae. In this pathway, three integral membrane proteins, Rim21, Dfg16, and Rim9, are considered to be the components of the pH sensor machinery. However, how these proteins are involved in pH sensing is totally unknown. In this work, we investigated the localization, physical interaction, and interrelationship of Rim21, Dfg16, and Rim9. These proteins were found to form a complex and to localize to the plasma membrane in a patchy and mutually dependent manner. Their cellular level was also mutually dependent. In particular, the Rim21 level was significantly decreased in dfg16Δ and rim9Δ cells. Upon external alkalization, the proteins were internalized and degraded. We also demonstrate that the transient degradation of Rim21 completely suppressed the Rim101 pathway but that the degradation of Dfg16 or Rim9 did not. This finding strongly suggests that Rim21 is the pH sensor protein and that Dfg16 and Rim9 play auxiliary functions through maintaining the level of Rim21 and assisting in its plasma membrane localization. Even without external alkalization, the Rim101 pathway was activated in a Rim21-dependent manner by either protonophore treatment or depletion of phosphatidylserine in the inner leaflet of the plasma membrane, both of which caused plasma membrane depolarization like the external alkalization. Therefore, plasma membrane depolarization seems to be one of the key signals for the pH sensor molecule Rim21.  相似文献   
87.
88.
The adipose-derived plasma protein, adiponectin (APN), has various protective effects on cardiovascular diseases. In this study, we show that endogenous APN is required for full cyclooxygenase-2 (COX-2) induction by ischemia-reperfusion injury in the heart in vivo. In rat neonatal cardiac myocytes, APN-induced COX-2 expression was reduced by treatment with a sphingosine kinase-1 (SphK-1) inhibitor or siRNA targeting SphK-1. Treatment with a sphingosine-1-phosphate (S1P) receptor antagonist also diminished COX-2 expression in response to APN stimulation. These findings suggest that APN is a physiological regulator of COX-2 signaling in the heart and that this regulation occurs in part via a SphK-1-S1P receptor dependent mechanism in cardiac myocytes.  相似文献   
89.
Aggregation and subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. Many proteins unrelated to amyloidoses also fibrillate at the appropriate conditions. These proteins serve as a model for studying the processes of protein misfolding, oligomerization and fibril formation. The accumulated data support the model where protein fibrillogenesis proceeds via the formation of a relatively unfolded amyloidogenic conformation. The urea-induced unfolding of bovine carbonic anhydrase II, BCA II, is characterized by a combination of high-resolution NMR, circular dichroism spectroscopy and small angle X-ray scattering. It is shown that the formation of associates of protein molecules in complex with solvent (water and urea), APS, takes place in the presence of 4-6 M urea. The subsequent increase in urea concentration to 8 M is accompanied by a disruption of APS and leads to a complete unfolding of a protein molecule. Analysis of BCA II self-association in the presence of 4.2 M urea revealed that APS are relatively large mostly beta-structural blocks with the averaged molecular mass of 190-220 kDa. This work also demonstrates some novel NMR-based methodological approaches that provide useful information on protein self-association.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号