首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   18篇
  2022年   2篇
  2021年   2篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   15篇
  2013年   8篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   7篇
  2008年   4篇
  2007年   13篇
  2006年   12篇
  2005年   8篇
  2004年   13篇
  2003年   9篇
  2002年   7篇
  2001年   10篇
  2000年   5篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1969年   1篇
  1964年   1篇
  1962年   1篇
  1955年   1篇
  1954年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
  1936年   1篇
排序方式: 共有228条查询结果,搜索用时 46 毫秒
11.

Background

Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries. Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. The first successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.

Results

This study demonstrates that atypical scrapie has distinct clinical, pathological and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.

Conclusions

Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage.  相似文献   
12.

Introduction  

Rheumatoid arthritis (RA) frequently involves the loss of tolerance to citrullinated antigens, which may play a role in pathogenicity. Citrullinated fibrinogen is commonly found in inflamed synovial tissue and is a frequent target of autoantibodies in RA patients. To obtain insight into the B-cell response to citrullinated fibrinogen in RA, its autoepitopes were systematically mapped using a new methodology.  相似文献   
13.
14.
Indoxyl esters and glycosides are useful chromogenic substrates for detecting enzyme activities in histochemistry, biochemistry and bacteriology. The chemical reactions exploited in the laboratory are similar to those that generate indigoid dyes from indoxyl-beta-d-glucoside and isatans (in certain plants), indoxyl sulfate (in urine), and 6-bromo-2-S-methylindoxyl sulfate (in certain molluscs). Pairs of indoxyl molecules released from these precursors react rapidly with oxygen to yield insoluble blue indigo (or purple 6,6'-dibromoindigo) and smaller amounts of other indigoid dyes. Our understanding of indigogenic substrates was developed from studies of the hydrolysis of variously substituted indoxyl acetates for use in enzyme histochemistry. The smallest dye particles, with least diffusion from the sites of hydrolysis, are obtained from 5-bromo-, 5-bromo-6-chloro- and 5-bromo-4-chloroindoxyl acetates, especially the last of these three. Oxidation of the diffusible indoxyls to insoluble indigoid dyes must occur rapidly. This is achieved with atmospheric oxygen and an equimolar mixture of K(3)Fe(CN)(6) and K(4)Fe(CN)(6), which has a catalytic function. H(2)O(2) is a by-product of the oxidation of indoxyl by oxygen. In the absence of a catalyst, the indoxyl diffuses and is oxidized by H(2)O(2) (catalyzed by peroxidase-like proteins) in sites different from those of the esterase activity. The concentration of K(3)Fe(CN)(6)/K(4)Fe(CN)(6) in a histochemical medium should be as low as possible because this mixture inhibits some enzymes and also promotes parallel formation from the indoxyl of soluble yellow oxidation products. The identities and positions of halogen substituents in the indoxyl moiety of a substrate determine the color and the physical properties of the resulting indigoid dye. The principles of indigogenic histochemistry learned from the study of esterases are applicable to methods for localization of other enzymes, because all indoxyl substrates release the same type of chromogenic product. Substrates are commercially available for a wide range of carboxylic esterases, phosphatases, phosphodiesterases, aryl sulfatase and several glycosidases. Indigogenic methods for carboxylic esterases have low substrate specificity and are used in conjunction with specific inhibitors of different enzymes of the group. Indigogenic methods for acid and alkaline phosphatases, phosphodiesterases and aryl sulfatase generally have been unsatisfactory; other histochemical techniques are preferred for these enzymes. Indigogenic methods are widely used, however, for glycosidases. The technique for beta-galactosidase activity, using 5-bromo-4-chloroindoxyl-beta-galactoside (X-gal) is applied to microbial cultures, cell cultures and tissues that contain the reporter gene lac-z derived from E. coli. This bacterial enzyme has a higher pH optimum than the lysosomal beta-galactosidase of animal cells. In plants, the preferred reporter gene is gus, which encodes beta-glucuronidase activity and is also demonstrable by indigogenic histochemistry. Indoxyl substrates also are used to localize enzyme activities in non-indigogenic techniques. In indoxyl-azo methods, the released indoxyl couples with a diazonium salt to form an azo dye. In indoxyl-tetrazolium methods, the oxidizing agent is a tetrazolium salt, which is reduced by the indoxyl to an insoluble coloured formazan. Indoxyl-tetrazolium methods operate only at high pH; the method for alkaline phosphatase is used extensively to detect this enzyme as a label in immunohistochemistry and in Western blots. The insolubility of indigoid dyes in water limits the use of indigogenic substrates in biochemical assays for enzymes, but the intermediate indoxyl and leucoindigo compounds are strongly fluorescent, and this property is exploited in a variety of sensitive assays for hydrolases. The most commonly used substrates for this purpose are glycosides and carboxylic and phosphate esters of N-methylindoxyl. Indigogenic enzyme substrates are among many chromogenic reagents used to facilitate the identification of cultured bacteria. An indoxyl substrate must be transported into the organisms by a permease to detect intracellular enzymes, as in the blue/white test for recognizing E. coli colonies that do or do not express the lac-z gene. Secreted enzymes are detected by substrate-impregnated disks or strips applied to the surfaces of cultures. Such devices often include several reagents, including indigogenic substrates for esterases, glycosidases and DNAse.  相似文献   
15.
We describe an analysis, applicable to any spotted microarray dataset produced using genomic DNA as a reference, that quantifies prokaryotic levels of mRNA on a genome-wide scale. Applying this to Mycobacterium tuberculosis, we validate the technique, show a correlation between level of expression and biological importance, define the complement of invariant genes and analyze absolute levels of expression by functional class to develop ways of understanding an organism's biology without comparison to another growth condition.  相似文献   
16.

Background

The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comParative analyses. In comParative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (a basal eudicot). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

Results

The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in s of abundance and length and most contain repeat motifs based on A and T nucleotides.

Conclusion

SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A+T richness", an A+T bias is not apparent upon more in-depth analysis, at least in these aspects. The pattern of evolution in the sequences identified as ycf15 and ycf68 is not consistent with them being protein-coding genes. In fact, these regions show no evidence of sequence conservation beyond what is normal for non-coding regions of the IR.  相似文献   
17.

Objective

To determine clinically related characteristics in patients with pure lower motor neuron (LMN) syndromes, not fulfilling accepted diagnostic criteria, who were likely to respond to intravenous immunoglobulin (IVIg) treatment.

Methods

Demographic, clinical, laboratory and neurophysiological characteristics were prospectively collected from patients with undifferentiated isolated LMN syndromes who were then treated with IVIg. Patients were classified as either responders or non-responders to therapy with IVIg based on clinical data and the two groups were compared.

Results

From a total cohort of 42 patients (30 males, 12 females, aged 18-83 years), 31 patients responded to IVIg and 11 did not. Compared to patients that developed progressive neurological decline, responders were typically younger (45.8 compared to 56.0 years, P<0.05) and had upper limb (83.9% compared to 63.6%, NS), unilateral (80.6% compared to 45.5%, P<0.05), and isolated distal (54.1% compared to 9.1%, P<0.05) weakness. Patients with predominantly upper limb, asymmetrical, and distal weakness were more likely to respond to IVIg therapy. Of the patients who responded to treatment, only 12.9% had detectable GM1 antibodies and conduction block (not fulfilling diagnostic criteria) was only identified in 22.6%.

Conclusions

More than 70% of patients with pure LMN syndromes from the present series responded to treatment with IVIg therapy, despite a low prevalence of detectable GM1 antibodies and conduction block. Patients with isolated LMN presentations, not fulfilling accepted diagnostic criteria, may respond to IVIg therapy, irrespective of the presence of conduction block or GM1 antibodies, and should be given an empirical trial of IVIg to determine treatment responsiveness.  相似文献   
18.
19.
Isolation of well-preserved pure cell populations is a prerequisite for sound studies of the molecular basis of any tissue-based biological phenomenon. This article reviews current methods for obtaining anatomically specific signals from molecules isolated from tissues, a basic requirement for productive linking of phenotype and genotype. The quality of samples isolated from tissue and used for molecular analysis is often glossed over or omitted from publications, making interpretation and replication of data difficult or impossible. Fortunately, recently developed techniques allow life scientists to better document and control the quality of samples used for a given assay, creating a foundation for improvement in this area. Tissue processing for molecular studies usually involves some or all of the following steps: tissue collection, gross dissection/identification, fixation, processing/embedding, storage/archiving, sectioning, staining, microdissection/annotation, and pure analyte labeling/identification and quantification. We provide a detailed comparison of some current tissue microdissection technologies, and provide detailed example protocols for tissue component handling upstream and downstream from microdissection. We also discuss some of the physical and chemical issues related to optimal tissue processing, and include methods specific to cytology specimens. We encourage each laboratory to use these as a starting point for optimization of their overall process of moving from collected tissue to high quality, appropriately anatomically tagged scientific results. In optimized protocols is a source of inefficiency in current life science research. Improvement in this area will significantly increase life science quality and productivity. The article is divided into introduction, materials, protocols, and notes sections. Because many protocols are covered in each of these sections, information relating to a single protocol is not contiguous. To get the greatest benefit from this article, readers are advised to read through the entire article first, identify protocols appropriate to their laboratory for each step in their workflow, and then reread entries in each section pertaining to each of these single protocols.  相似文献   
20.
The canonical Wnt signaling pathway is highly conserved in evolution, widely used throughout animal development, and frequently hyperactive in cancer. Although Wnt signaling has been the subject of extensive genetic analysis in the past, some 200 genes have now been identified as candidate modulators of this pathway by a recent study using high-throughput RNAi screening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号