首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   50篇
  2023年   5篇
  2022年   7篇
  2021年   9篇
  2020年   13篇
  2019年   9篇
  2018年   9篇
  2017年   9篇
  2016年   15篇
  2015年   20篇
  2014年   22篇
  2013年   28篇
  2012年   46篇
  2011年   46篇
  2010年   27篇
  2009年   23篇
  2008年   42篇
  2007年   36篇
  2006年   29篇
  2005年   33篇
  2004年   22篇
  2003年   29篇
  2002年   17篇
  2001年   2篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1980年   2篇
  1975年   3篇
  1969年   3篇
  1961年   2篇
  1950年   3篇
  1944年   2篇
  1941年   2篇
  1937年   3篇
  1933年   1篇
  1930年   1篇
  1927年   2篇
  1917年   1篇
排序方式: 共有596条查询结果,搜索用时 296 毫秒
101.
The unique set of morphological characteristics of the Liang Bua hominins (Homo floresiensis) has been attributed to explanations as diverse as insular dwarfism and pathological microcephaly. This study examined the relationship between cranial size and shape across a range of hominin and African ape species to test whether or not cranial morphology of LB1 is consistent with the basic pattern of static allometry present in these various taxa. Correlations between size and 3D cranial shape were explored using principal components analysis in shape space and in Procrustes form space. Additionally, patterns of static allometry within both modern humans and Plio-Pleistocene hominins were used to simulate the expected cranial shapes of each group at the size of LB1. These hypothetical specimens were compared to LB1 both visually and statistically. Results of most analyses indicated that LB1 best fits predictions for a small specimen of fossil Homo but not for a small modern human. This was especially true for analyses of neurocranial landmarks. Results from the whole cranium were less clear about the specific affinities of LB1, but, importantly, demonstrated that aspects of facial morphology associated with smaller size converge on modern human morphology. This suggests that facial similarities between LB1 and anatomically modern humans may not be indicative of a close relationship. Landmark data collected from this study were also used to test the degree of cranial asymmetry in LB1. These comparisons indicated that the cranium is fairly asymmetrical, but within the range of asymmetry exhibited by modern humans and all extant African ape species. Compared to other fossil specimens, the degree of asymmetry in LB1 is moderate and readily explained by the taphonomic processes to which all fossils are subject. Taken together, these findings suggest that H. floresiensis was most likely the diminutive descendant of a species of archaic Homo, although the details of this evolutionary history remain obscure.  相似文献   
102.
Salmonella typhimurium and Campylobacter jejuni pose significant risks to human health and poultry are a major vector for infection. Comparative in vivo infection models were performed to compare the avian host immune response to both bacterial species. Forty-five commercial broiler chickens were orally challenged with either C. jejuni or S. typhimurium whilst 60 similar control birds were mock challenged in parallel. Birds were sacrificed at 0, 6, 20 and 48 h post-infection and cloacal swabs, blood and tissue samples taken. Peripheral blood leukocytes were isolated for flow cytometric analyses and RNA was extracted for gene expression profiling. Colonisation patterns were markedly different between the two bacterial species, with systemic colonisation of Campylobacter outside the gastrointestinal tract. Salmonella infection induced significant changes in circulating heterophil and monocyte/macrophage populations, whilst Campylobacter infection had no effect on the heterophil numbers but caused a significant early increase in circulating monocytes/macrophages. Toll-like receptor 1 (TLR1) gene expression was decreased, and avian β-defensin (AvBD) gene expression (AvBD3, AvBD10 and AvBD12) was significantly increased in response to Salmonella infection (P < 0.05). In contrast, Campylobacter infection induced increased TLR21 gene expression but significantly reduced expression of seven antimicrobial peptide (AMP) genes (AvBD3, AvBD4, AvBD8, AvBD13, AvBD14, CTHL2 and CTHL3; P < 0.05). Considered together, microbiological, cellular and gene expression profiles indicate that the innate immune system responds differently to Salmonella and to Campylobacter infection. Furthermore, reduction in the expression of AMPs may play a role in the persistence of high level colonisation of the host by Campylobacter. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
103.
Neisseria meningitidis encodes three DsbA oxidoreductases (NmDsbA1-NmDsbA3) that are vital for the oxidative folding of many membrane and secreted proteins, and these three enzymes are considered to exhibit different substrate specificities. This has led to the suggestion that each N. meningitidis DsbA (NmDsbA) may play a specialized role in different stages of pathogenesis; however, the molecular and structural bases of the different roles of NmDsbAs are unclear. With the aim of determining the molecular basis for substrate specificity and how this correlates to pathogenesis, we undertook a biochemical and structural characterization of the three NmDsbAs. We report the 2.0-Å-resolution crystal structure of the oxidized form of NmDsbA1, which adopted a canonical DsbA fold similar to that observed in the structures of NmDsbA3 and Escherichia coli DsbA (EcDsbA). Structural comparisons revealed variations around the active site and candidate peptide-binding region. Additionally, we demonstrate that all three NmDsbAs are strong oxidases with similar redox potentials; however, they differ from EcDsbA in their ability to be reoxidized by E. coli DsbB. Collectively, our studies suggest that the small structural differences between the NmDsbA enzymes and EcDsbA are functionally significant and are the likely determinants of substrate specificity.  相似文献   
104.
BACKGROUND: The atypical Fat cadherin has long been known to control cell proliferation and organ size in Drosophila, but the mechanism by which Fat controls these processes has remained elusive. A newly emerging signaling pathway that controls organ size during development is the Salvador/Warts/Hippo pathway. RESULTS: Here we demonstrate that Fat limits organ size by modulating activity of the Salvador/Warts/Hippo pathway. ft interacts genetically with positive and negative regulators of this pathway, and tissue lacking fat closely phenocopies tissue deficient for genes that normally promote Salvador/Warts/Hippo pathway activity. Cells lacking fat grow and proliferate more quickly than their wild-type counterparts and exhibit delayed cell-cycle exit as a result of elevated expression of Cyclin E. fat mutant cells display partial insensitivity to normal developmental apoptosis cues and express increased levels of the anti-apoptotic DIAP1 protein. Collectively, these defects lead to increased organ size and organism lethality in fat mutant animals. Fat modulates Salvador/Warts/Hippo pathway activity by promoting abundance and localization of Expanded protein at the apical membrane of epithelial tissues. CONCLUSIONS: Fat restricts organ size during Drosophila development via the Salvador/Warts/Hippo pathway. These studies aid our understanding of developmental organ size control and have implications for human hyperproliferative disorders, such as cancers.  相似文献   
105.
Mutations in fibrillin-1 result in Marfan syndrome, which affects the cardiovascular, skeletal and ocular systems. The multiorgan involvement and wide spectrum of associated phenotypes highlights the complex pathogenesis underlying Marfan syndrome. To elucidate the genotype to phenotype correlations, we engineered four Marfan syndrome causing mutations into a fibrillin-1 fragment encoded by exons 18-25, a region known to interact with tropoelastin. Biophysical and biochemical approaches, including small angle x-ray scattering, analytical ultracentrifugation, and circular dichroism, were used to study the impact of these mutations upon the structure and function of the protein. Mutations G880S, C862R, and C908R, situated within the second hybrid domain, disrupted the ratio of alpha-helix to beta-sheet leading to a more compact conformation. These data clearly demonstrate the importance of the previously uncharacterized hybrid domain in fibrillin-1 structure. In contrast, mutation K1023N situated within the linker region between the third eight cysteine motif and cbEGF 11 markedly extended the length of the fragment. However, none of the mutations affected tropoelastin binding. The profound effects of all four mutations on fragment conformation suggest that they contribute to the pathogenesis of Marfan syndrome by disrupting protein folding and its assembly into fibrillin-rich microfibrils.  相似文献   
106.

Background

Pulmonary inflammation is a major contributor to morbidity in a variety of respiratory disorders, but treatment options are limited. Here we investigate the efficacy, safety and mechanism of action of low dose inhaled carbon monoxide (CO) using a mouse model of lipopolysaccharide (LPS)-induced pulmonary inflammation.

Methodology

Mice were exposed to 0–500 ppm inhaled CO for periods of up to 24 hours prior to and following intratracheal instillation of 10 ng LPS. Animals were sacrificed and assessed for intraalveolar neutrophil influx and cytokine levels, flow cytometric determination of neutrophil number and activation in blood, lung and lavage fluid samples, or neutrophil mobilisation from bone marrow.

Principal Findings

When administered for 24 hours both before and after LPS, inhaled CO of 100 ppm or more reduced intraalveolar neutrophil infiltration by 40–50%, although doses above 100 ppm were associated with either high carboxyhemoglobin, weight loss or reduced physical activity. This anti-inflammatory effect of CO did not require pre-exposure before induction of injury. 100 ppm CO exposure attenuated neutrophil sequestration within the pulmonary vasculature as well as LPS-induced neutrophilia at 6 hours after LPS, likely due to abrogation of neutrophil mobilisation from bone marrow. In contrast to such apparently beneficial effects, 100 ppm inhaled CO induced an increase in pulmonary barrier permeability as determined by lavage fluid protein content and translocation of labelled albumin from blood to the alveolar space.

Conclusions

Overall, these data confirm some protective role for inhaled CO during pulmonary inflammation, although this required a dose that produced carboxyhemoglobin values close to potentially toxic levels for humans, and increased lung permeability.  相似文献   
107.
108.
The relationship between system-level and subsystem-level master equations is investigated and then utilised for a systematic and potentially automated derivation of the hierarchy of moment equations in a susceptible-infectious-removed (SIR) epidemic model. In the context of epidemics on contact networks we use this to show that the approximate nature of some deterministic models such as mean-field and pair-approximation models can be partly understood by the identification of implicit anomalous terms. These terms describe unbiological processes which can be systematically removed up to and including the nth order by nth order moment closure approximations. These terms lead to a detailed understanding of the correlations in network-based epidemic models and contribute to understanding the connection between individual-level epidemic processes and population-level models. The connection with metapopulation models is also discussed. Our analysis is predominantly made at the individual level where the first and second order moment closure models correspond to what we term the individual-based and pair-based deterministic models, respectively. Matlab code is included as supplementary material for solving these models on transmission networks of arbitrary complexity.  相似文献   
109.
110.
In neurons, the proper distribution of mitochondria is essential because of a requirement for high energy and calcium buffering during synaptic neurotransmission. The efficient, regulated transport of mitochondria along axons to synapses is therefore crucial for maintaining function. The trafficking kinesin protein (TRAK)/Milton family of proteins comprises kinesin adaptors that have been implicated in the neuronal trafficking of mitochondria via their association with the mitochondrial protein Miro and kinesin motors. In this study, we used gene silencing by targeted shRNAi and dominant negative approaches in conjunction with live imaging to investigate the contribution of endogenous TRAKs, TRAK1 and TRAK2, to the transport of mitochondria in axons of hippocampal pyramidal neurons. We report that both strategies resulted in impairing mitochondrial mobility in axonal processes. Differences were apparent in terms of the contribution of TRAK1 and TRAK2 to this transport because knockdown of TRAK1 but not TRAK2 impaired mitochondrial mobility, yet both TRAK1 and TRAK2 were shown to rescue transport impaired by TRAK1 gene knock-out. Thus, we demonstrate for the first time the pivotal contribution of the endogenous TRAK family of kinesin adaptors to the regulation of mitochondrial mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号