首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2527篇
  免费   189篇
  国内免费   3篇
  2024年   4篇
  2023年   29篇
  2022年   22篇
  2021年   90篇
  2020年   39篇
  2019年   60篇
  2018年   84篇
  2017年   72篇
  2016年   105篇
  2015年   125篇
  2014年   145篇
  2013年   207篇
  2012年   227篇
  2011年   205篇
  2010年   131篇
  2009年   108篇
  2008年   155篇
  2007年   142篇
  2006年   129篇
  2005年   85篇
  2004年   88篇
  2003年   84篇
  2002年   78篇
  2001年   32篇
  2000年   33篇
  1999年   31篇
  1998年   15篇
  1997年   14篇
  1996年   9篇
  1995年   7篇
  1994年   7篇
  1993年   3篇
  1992年   16篇
  1991年   16篇
  1990年   11篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   6篇
  1985年   13篇
  1984年   10篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1979年   5篇
  1976年   5篇
  1975年   10篇
  1974年   7篇
  1973年   2篇
  1966年   2篇
排序方式: 共有2719条查询结果,搜索用时 31 毫秒
71.
Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.  相似文献   
72.
Cilia in ciliated cells consist of protruding structures that sense mechanical and chemical signals from the extracellular environment. Cilia are assembled with variety molecules via a process known as intraflagellar transport (IFT). What controls the length of cilia in ciliated cells is critical to understand ciliary disease such as autosomal dominant polycystic kidney disease, which involves abnormally short cilia. But this control mechanism is not well understood. Previously, multiple tubular cysts have been observed in the kidneys of max-interacting protein 1 (Mxi1)-deficient mice aged 6 months or more. Here, we clarified the relationship between Mxi1 inactivation and cilia disassembly. Cilia phenotypes were observed in kidneys of Mxi1-deficient mice using scanning electron microscopy to elucidate the effect of Mxi1 on renal cilia phenotype, and cilia disassembly was observed in Mxi1-deficient kidney. In addition, genes related to cilia were validated in vitro and in vivo using quantitative PCR, and Ift20 was selected as a candidate gene in this study. The length of cilium decreased, and p-ERK level induced by a cilia defect increased in kidneys of Mxi1-deficient mice. Ciliogenesis of Mxi1-deficient mouse embryonic fibroblasts (MEFs) decreased, and this abnormality was restored by Mxi1 transfection in Mxi1-deficient MEFs. We confirmed that ciliogenesis and Ift20 expression were regulated by Mxi1 in vitro. We also determined that Mxi1 regulates Ift20 promoter activity via Ets-1 binding to the Ift20 promoter. These results indicate that inactivating Mxi1 induces ciliary defects in polycystic kidney.  相似文献   
73.
Though air-breathing has probably evolved mainly as a response to hypoxia, it may provide an important oxygen supplement when metabolism is elevated, as for example during swimming. Due to the increased travelling distance involved when an air-breathing fish swims to and from the surface, and the increased drag when the surface is breached, it can be proposed that air-breathing results in a rise in the apparent cost of transport. In order to investigate this hypothesis, it is necessary to use a fish that is able to swim equally well with and without access to air. The striped catfish Pangasianodon hypophthalmus has been shown to have a sufficiently high capacity for aquatic oxygen uptake in normoxia, to allow for such a comparison. Here, we measured the partitioning of oxygen uptake ( $ \dot{M}{\text{O}}_{2} $ ) during swimming and recovery, and calculated the apparent cost of transport with and without access to air, under normoxic conditions. Aerial $ \dot{M}{\text{O}}_{2} $ constituted 25–40 % of the total $ \dot{M}{\text{O}}_{2} $ during swimming and less than 15 % during recovery. The net cost of transport was 25 % lower in fish that did not air-breathe compared to fish that did, showing that the cost of surfacing can be substantial. This is the first study to measure partitioning in an air-breathing fish during swimming at velocities close to the critical swimming speed.  相似文献   
74.
Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.  相似文献   
75.
Three new pyrrole oligoglycosides, astebatheriosides A–C (13), and a new furan oligoglycoside, astebatherioside D (4), were isolated from the starfish Asterina batheri by various chromatographic methods. Their structures were elucidated by spectroscopic and chemical methods. Compounds 2, 3, and 4 moderately inhibited IL-12 p40 production in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells (BMDCs) with IC50 values of 36.4, 31.6, and 22.8 μM, respectively.  相似文献   
76.
Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone‐butanol‐ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol‐butanol‐ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab‐scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot‐scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab‐scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1083–1088, 2013  相似文献   
77.
This paper presents the dynamic modeling of a flexible tail for a robotic fish. For this purpose firstly, the flexible tail was simplified as a slewing beam actuated by a driving moment. The governing equation of the flexible tail was derived by using the Euler-Bernoulli theory. In this equation, the resistive forces were estimated as a term analogous to viscous damping. Then, the modal analysis method was applied in order to derive an analytical solution of the governing equation, by which the relationship between the driving moment and the lateral movement of the flexible tail was described. Finally, simulations and experiments were carried out and the results were compared to verify the accuracy of the dynamic model. It was proved that the dynamic model of a fish robot with a flexible tail fin well explains the real behavior of robotic fish in underwater environment.  相似文献   
78.
Selection markers are common genetic elements used in recombinant cell line development. While several selection systems exist for use in mammalian cell lines, no previous study has comprehensively evaluated their performance in the isolation of recombinant populations and cell lines. Here we examine four antibiotics, hygromycin B, neomycin, puromycin, and Zeocin™, and their corresponding selector genes, using a green fluorescent protein (GFP) as a reporter in two model cell lines, HT1080 and HEK293. We identify Zeocin™ as the best selection agent for cell line development in human cells. In comparison to the other selection systems, Zeocin™ is able to identify populations with higher fluorescence levels, which in turn leads to the isolation of better clonal populations and less false positives. Furthermore, Zeocin™-resistant populations exhibit better transgene stability in the absence of selection pressure compared to other selection agents. All isolated Zeocin™-resistant clones, regardless of cell type, exhibited GFP expression. By comparison, only 79% of hygromycin B-resistant, 47% of neomycin-resistant, and 14% of puromycin-resistant clones expressed GFP. Based on these results, we rank Zeocin™ > hygromycin B ∼ puromycin > neomycin for cell line development in human cells. Furthermore, this study demonstrates that selection marker choice does indeed impact cell line development.  相似文献   
79.
Boerhaavia diffusa L. is used in the traditional medicine of several Asian countries. The isolation and identification of five new compounds, together with 11 known compounds, from the ethyl acetate extract of the aerial part of B. diffusa grown Vietnam is reported. The structure of the new compounds was established by 1D and 2D NMR spectroscopy, and high resolution ESI-MS analysis. New compounds are two rotenoids: 9,11-dihydroxy-6,10-dimethoxy[1]benzopyrano[3,4-b][1]benzopyran-12(6H)-one (boeravinone P, 3) and 3-[2-(β-d-glucopyranosyloxy)-3-hydroxyphenyl]-5-hydroxy-2-hydroxymethyl-7-methoxy-6-methyl-4H-1-benzopyran-4-one (boeravinone Q, 9), an atropisomeric mixture of two rotenoid glycosides (3′,5-dihydroxy-2-hydroxymethyl-7-methoxy-6-methylisoflavone 2′-O-β-d-glucopyranoside, 11), a sesquiterpene lactone (4,10-dihydroxy-8-methoxyguai-7(11)-en-8,12-olide, 5) and a new phenylpropanoid glycoside (boerhaavic acid, 15).  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号