首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   95篇
  国内免费   32篇
  2022年   6篇
  2021年   6篇
  2020年   9篇
  2019年   7篇
  2018年   10篇
  2017年   13篇
  2016年   14篇
  2015年   15篇
  2014年   20篇
  2013年   26篇
  2012年   43篇
  2011年   40篇
  2010年   34篇
  2009年   33篇
  2008年   26篇
  2007年   19篇
  2006年   36篇
  2005年   29篇
  2004年   29篇
  2003年   18篇
  2002年   24篇
  2001年   23篇
  2000年   18篇
  1999年   18篇
  1998年   17篇
  1997年   14篇
  1996年   11篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   16篇
  1991年   10篇
  1990年   14篇
  1989年   11篇
  1988年   12篇
  1987年   10篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   7篇
  1982年   9篇
  1981年   9篇
  1980年   7篇
  1977年   12篇
  1975年   6篇
  1974年   7篇
  1973年   6篇
  1969年   7篇
  1966年   6篇
  1949年   5篇
排序方式: 共有826条查询结果,搜索用时 296 毫秒
71.
目的:基于钙黄绿素-铜(Ⅱ)荧光体系测定乙酰半胱氨酸。方法:在pH=8.0的Na2HPO.412H2O-KH2PO4缓冲液中,以492 nm为激发波长,520 nm为发射波长测定乙酰半胱氨酸溶液的荧光强度。结果:在pH=8.0的Na2HPO.412H2O-KH2PO4缓冲液中,二价铜离子与钙黄绿素配位引起荧光猝灭。由于乙酰半胱氨酸中巯基上的硫离子与Cu2+的亲和力很强,可从钙黄绿素-铜(Ⅱ)的络合物中夺取铜离子而使钙黄绿素游离出来,从而使体系的荧光得以恢复,并且荧光恢复的程度与加入乙酰半胱氨酸的量在一定范围内成线性。结论:建立了一种测定乙酰半胱氨酸的荧光分析新方法,该方法的线性范围为6.0 10-6~1.4 10-5 mol/L,检出限为4.010-6 mol/L。  相似文献   
72.
73.
Adaptive immune signaling can be coupled to stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and NF-kappaB activation by the hematopoietic progenitor kinase 1 (HPK1), a mammalian hematopoiesis-specific Ste20 kinase. To gain insight into the regulation of leukocyte signal transduction, we investigated the molecular details of HPK1 activation. Here we demonstrate the capacity of the Src family kinase Lck and the SLP-76 family adaptor protein Clnk (cytokine-dependent hematopoietic cell linker) to induce HPK1 tyrosine phosphorylation and relocation to the plasma membrane, which in lymphocytes results in recruitment of HPK1 to the contact site of antigen-presenting cell (APC)-T-cell conjugates. Relocation and clustering of HPK1 cause its enzymatic activation, which is accompanied by phosphorylation of regulatory sites in the HPK1 kinase activation loop. We show that full activation of HPK1 is dependent on autophosphorylation of threonine 165 and phosphorylation of serine 171, which is a target site for protein kinase D (PKD) in vitro. Upon T-cell receptor stimulation, PKD robustly augments HPK1 kinase activity in Jurkat T cells and enhances HPK1-driven SAPK/JNK and NF-kappaB activation; conversely, antisense down-regulation of PKD results in reduced HPK1 activity. Thus, activation of major lymphocyte signaling pathways via HPK1 involves (i) relocation, (ii) autophosphorylation, and (iii) transphosphorylation of HPK1 by PKD.  相似文献   
74.
The junctional adhesion molecules (JAMs) have been recently described as interendothelial junctional molecules and as integrin ligands. Here we show that JAM-B and JAM-C undergo heterophilic interaction in cell-cell contacts and that JAM-C is recruited and stabilized in junctional complexes by JAM-B. In addition, soluble JAM-B dissociates soluble JAM-C homodimers to form JAM-B/JAM-C heterodimers. This suggests that the affinity of JAM-C monomers to form dimers is higher for JAM-B than for JAM-C. Using antibodies against JAM-C, the formation of JAM-B/JAM-C heterodimers can be abolished. This liberates JAM-C from its vascular binding partner JAM-B and makes it available on the apical side of vessels for interaction with its leukocyte counter-receptor alpha(M)beta2 integrin. We demonstrate that the modulation of JAM-C localization in junctional complexes is a new regulatory mechanism for alpha(M)beta2-dependent adhesion of leukocytes.  相似文献   
75.
BACKGROUND: Biochemical testing for pheochromocytoma by measurement of fractionated plasma metanephrines is limited by false positive rates of up to 18% in people without known genetic predisposition to the disease. The plasma normetanephrine fraction is responsible for most false positives and plasma normetanephrine increases with age. The objective of this study was to determine if we could improve the specificity of fractionated plasma measurements, by statistically adjusting for age. METHODS: An age-adjusted metanephrine score was derived using logistic regression from 343 subjects (including 33 people with pheochromocytoma) who underwent fractionated plasma metanephrine measurements as part of investigations for suspected pheochromocytoma at Mayo Clinic Rochester (derivation set). The performance of the age-adjusted score was validated in a dataset of 158 subjects (including patients 23 with pheochromocytoma) that underwent measurements of fractionated plasma metanephrines at Mayo Clinic the following year (validation dataset). None of the participants in the validation dataset had known genetic predisposition to pheochromocytoma. RESULTS: The sensitivity of the age-adjusted metanephrine score was the same as that of traditional interpretation of fractionated plasma metanephrine measurements, yielding a sensitivity of 100% (23/23, 95% confidence interval [CI] 85.7%, 100%). However, the false positive rate with traditional interpretation of fractionated plasma metanephrine measurements was 16.3% (22/135, 95% CI, 11.0%, 23.4%) and that of the age-adjusted score was significantly lower at 3.0% (4/135, 95% CI, 1.2%, 7.4%) (p < 0.001 using McNemar's test). CONCLUSION: An adjustment for age in the interpretation of results of fractionated plasma metanephrines may significantly decrease false positives when using this test to exclude sporadic pheochromocytoma. Such improvements in false positive rate may result in savings of expenditures related to confirmatory imaging.  相似文献   
76.
77.
We report the development of 11 polymorphic microsatellite loci in pacific white shrimp (Litopenaeus vannamei) using an unenriched genomic library. The number of the alleles ranged from two to 18 and observed hererozygosity ranged from 0.0286 to 0.9429, indicating that these markers will be useful for population studies and mapping in pacific white shrimp. Seven loci were detected deviated from Hardy–Weinberg, caused by deficiency of heterozygote, suggesting population genetic structure across the sampled population. No evidence for linkage disequilibrium was found.  相似文献   
78.
Janus kinases (JAKs) are critical regulators of cytokine pathways and attractive targets of therapeutic value in both inflammatory and myeloproliferative diseases. Although the crystal structures of active JAK1 and JAK2 kinase domains have been reported recently with the clinical compound CP-690550, the structures of both TYK2 and JAK3 with CP-690550 have remained outstanding. Here, we report the crystal structures of TYK2, a first in class structure, and JAK3 in complex with PAN-JAK inhibitors CP-690550 ((3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile) and CMP-6 (tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one), both of which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to that observed in crystal structures of JAK1 and JAK2. Additionally, a complete thermodynamic characterization of JAK/CP-690550 complex formation was completed by isothermal titration calorimetry, indicating the critical role of the nitrile group from the CP-690550 compound. Finally, computational analysis using WaterMap further highlights the critical positioning of the CP-690550 nitrile group in the displacement of an unfavorable water molecule beneath the glycine-rich loop. Taken together, the data emphasize the outstanding properties of the kinome-selective JAK inhibitor CP-690550, as well as the challenges in obtaining JAK isozyme-selective inhibitors due to the overall structural and sequence similarities between the TYK2, JAK1, JAK2 and JAK3 isozymes. Nevertheless, subtle amino acid variations of residues lining the ligand-binding cavity of the JAK enzymes, as well as the global positioning of the glycine-rich loop, might provide the initial clues to obtaining JAK-isozyme selective inhibitors.  相似文献   
79.
Endothelial cells line the blood vessel and precursor endothelial cells appear to have a pivotal effect on the organ formation of the heart, the embryonic development of the kidney, and the liver. Several growth factors including the fibroblast growth factors (FGF) seem to be involved in these processes. Ligands such as basic FGF produced and secreted by endothelial cells may also coordinate cellular migration, differentiation, and proliferation under pathological conditions including wound healing, tumorgenesis, and fibrogenesis in the adult. Recently we demonstrated the expression of two secreted FGFs, FGF16, and FGF18, in HUVEC and in rat aortic tissue. In the present report, we confirmed by RT-PCR analysis that FGF18 is wildly expressed in the cardiovascular tissue, while FGF16 showed a more restricted expression pattern. HUVEC clearly demonstrated chemotaxis towards FGF16 and FGF18. Both FGFs also enhanced cell migration in response to mechanical damage. However, recombinant FGF16 and FGF18 failed to induce endothelial cell proliferation or sprouting in a three-dimensional in vitro angiogenesis assay. Fgf18 expression was earlier reported in the liver, and we detected FGF18 expression in liver vascular and liver sinusoidal endothelial cells (LSECs), but not in hepatic parenchymal cells. Recombinant FGF18 stimulated DNA synthesis in primary hepatocytes, suggesting, that endothelial FGF18 might have a paracrine function in promoting growth of the parenchymal tissue. Interestingly, FGF2, which is mitogenic on endothelial cells and hepatocytes stimulates a sustained MAPK activation in both cell types, while FGF18 causes a short transient activation of the MAPK pathway in endothelial cells but a sustained activation in hepatocytes. Therefore, the difference in the time course of MAPK activation by the different FGFs appears to be the cause for the different cellular responses.  相似文献   
80.
The blind Drosophila mutant ninaD lacks the visual chromophore. Genetic evidence that the molecular basis is a defect in carotenoid uptake which causes vitamin A deficiency exists. The ninaD gene encodes a scavenger receptor that is significantly homologous in sequence with the mammalian scavenger receptors SR-BI (scavenger receptor class B type I) and CD36 (cluster determinant 36), yet NinaD has not been characterized in functional detail. Therefore, we established a Drosophila S2 cell culture system for biochemically characterizing the ninaD gene products. We show that the two splice variant isoforms encoded by ninaD exhibit different subcellular localizations. NinaD-I, the long protein variant, is localized at the plasma membrane, whereas the short variant, NinaD-II, is localized at intracellular membranes. Only NinaD-I could mediate the cellular uptake of carotenoids from micelles in this cell culture system. Carotenoid uptake was concentration-dependent and saturable. By in vivo analyses of different mutant and transgenic fly strains, we provide evidence of an essential role of NinaD-I in the absorption of dietary carotenoids to support visual chromophore synthesis. Moreover, our analyses suggest a role of NinaD-I in tocopherol metabolism. Even though Drosophila is a sterol auxotroph, we found no evidence of a contribution of NinaD-I to the uptake of these compounds. Together, our study establishes an evolutionarily conserved connection between class B scavenger receptors and the numerous functions of fat soluble vitamins in animal physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号