首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   107篇
  2021年   5篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   10篇
  2014年   15篇
  2013年   19篇
  2012年   28篇
  2011年   25篇
  2010年   22篇
  2009年   18篇
  2008年   25篇
  2007年   14篇
  2006年   19篇
  2005年   21篇
  2004年   13篇
  2003年   14篇
  2002年   25篇
  2001年   26篇
  2000年   29篇
  1999年   22篇
  1998年   11篇
  1997年   5篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   9篇
  1992年   22篇
  1991年   23篇
  1990年   19篇
  1989年   14篇
  1988年   20篇
  1987年   15篇
  1986年   13篇
  1985年   13篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1980年   8篇
  1979年   5篇
  1976年   8篇
  1974年   6篇
  1973年   4篇
  1971年   4篇
  1969年   5篇
  1964年   5篇
  1961年   4篇
  1951年   4篇
  1917年   6篇
排序方式: 共有712条查询结果,搜索用时 234 毫秒
71.
Nogo-66, the extracellular 66 aa loop of the Nogo-A protein found in CNS myelin, interacts with the Nogo receptor and has been proposed to mediate inhibition of axonal regrowth. It has been shown that immunization with Nogo-A promotes recovery in animal models of spinal cord injury through induction of Ab production. In this report, studies were performed to characterize the immune response to Nogo-66 and to determine the role of Nogo in experimental autoimmune encephalomyelitis (EAE). Immunization of EAE-susceptible mouse strains with peptides derived from Nogo-66 induced a CNS immune response with clinical and pathological similarities to EAE. The Nogo-66 peptides elicited strong T cell responses that were not cross-reactive to other encephalitogenic myelin Ags. Using a large scale spotted microarray containing proteins and peptides derived from a wide spectrum of myelin components, we demonstrated that Nogo-66 peptides also generated a specific Ab response that spreads to several other encephalitogenic myelin Ags following immunization. Nogo-66-specific T cell lines ameliorated established EAE, via Nogo-66-specific Th2 cells that entered the CNS. These results indicate that some T cell and B cell immune responses to Nogo-66 are associated with suppression of ongoing EAE, whereas other Nogo-66 epitopes can be encephalitogenic.  相似文献   
72.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   
73.
When users’ tasks in a distributed heterogeneous computing environment (e.g., cluster of heterogeneous computers) are allocated resources, the total demand placed on some system resources by the tasks, for a given interval of time, may exceed the availability of those resources. In such a case, some tasks may receive degraded service or be dropped from the system. One part of a measure to quantify the success of a resource management system (RMS) in such a distributed environment is the collective value of the tasks completed during an interval of time, as perceived by the user, application, or policy maker. The Flexible Integrated System Capability (FISC) measure presented here is a measure for quantifying this collective value. The FISC measure is a flexible multi-dimensional measure such that any task attribute can be inserted and may include priorities, versions of a task or data, deadlines, situational mode, security, application- and domain-specific QoS, and task dependencies. For an environment where it is important to investigate how well data communication requests are satisfied, the data communication request satisfied can be the basis of the FISC measure instead of tasks completed. The motivation behind the FISC measure is to determine the performance of resource management schemes if tasks have multiple attributes that needs to be satisfied. The goal of this measure is to compare the results of different resource management heuristics that are trying to achieve the same performance objective but with different approaches. This research was supported by the DARPA/ITO Quorum Program, by the DARPA/ISO BADD Program and the Office of Naval Research under ONR grant number N00014-97-1-0804, by the DARPA/ITO AICE program under contract numbers DABT63-99-C-0010 and DABT63-99-C-0012, and by the Colorado State University George T. Abell Endowment. Intel and Microsoft donated some of the equipment used in this research. Jong-Kook Kim is pursuing a Ph.D. degree from the School of Electrical and Computer Engineering at Purdue University (expected in August 2004). Jong-Kook received his M.S. degree in electrical and computer engineering from Purdue University in May 2000. He received his B.S. degree in electronic engineering from Korea University, Seoul, Korea in 1998. He has presented his work at several international conferences and has been a reviewer for numerous conferences and journals. His research interests include heterogeneous distributed computing, computer architecture, performance measure, resource management, evolutionary heuristics, and power-aware computing. He is a student member of the IEEE, IEEE Computer Society, and ACM. Debra Hensgen is a member of the Research and Evaluation Team at OpenTV in Mountain View, California. OpenTV produces middleware for set-top boxes in support of interactive television. She received her Ph.D. in the area of Distributed Operating Systems from the University of Kentucky. Prior to moving to private industry, as an Associate Professor in the systems area, she worked with students and colleagues to design and develop tools and systems for resource management, network re-routing algorithms and systems that preserve quality of service guarantees, and visualization tools for performance debugging of parallel and distributed systems. She has published numerous papers concerning her contributions to the Concurra toolkit for automatically generating safe, efficient concurrent code, the Graze parallel processing performance debugger, the SAAM path information base, and the SmartNet and MSHN Resource Management Systems. Taylor Kidd is currently a Software Architect for Vidiom Systems in Portland Oregon. His current work involves the writing of multi-company industrial specifications and the architecting of software systems for the digital cable television industry. He has been involved in the establishment of international specifications for digital interactive television in both Europe and in the US. Prior to his current position, Dr. Kidd has been a researcher for the US Navy as well as an Associate Professor at the Naval Postgraduate School. Dr Kidd received his Ph.D. in Electrical Engineering in 1991 from the University of California, San Diego. H. J. Siegel was appointed the George T. Abell Endowed Chair Distinguished Professor of Electrical and Computer Engineering at Colorado State University (CSU) in August 2001, where he is also a Professor of Computer Science. In December 2002, he became the first Director of the CSU Information Science and Technology Center (ISTeC). ISTeC is a university-wide organization for promoting, facilitating, and enhancing CSU’s research, education, and outreach activities pertaining to the design and innovative application of computer, communication, and information systems. From 1976 to 2001, he was a professor at Purdue University. He received two BS degrees from MIT, and the MA, MSE, and PhD degrees from Princeton University. His research interests include parallel and distributed computing, heterogeneous computing, robust computing systems, parallel algorithms, parallel machine interconnection networks, and reconfigurable parallel computer systems. He has co-authored over 300 published papers on parallel and distributed computing and communication, is an IEEE Fellow, is an ACM Fellow, was a Coeditor-in-Chief of the Journal of Parallel and Distributed Computing, and was on the Editorial Boards of both the IEEE Transactions on Parallel and Distributed Systems and the IEEE Transactions on Computers. He was Program Chair/Co-Chair of three major international conferences, General Chair/Co-Chair of four international conferences, and Chair/Co-Chair of five workshops. He has been an international keynote speaker and tutorial lecturer, and has consulted for industry and government. David St. John is Chief Information Officer for WeatherFlow, Inc., a weather services company specializing in coastal weather observations and forecasts. He received a master’s degree in Engineering from the University of California, Irvine. He spent several years as the head of staff on the Management System for Heterogeneous Networks project in the Computer Science Department of the Naval Postgraduate School. His current relationship with cluster computing is as a user of the Regional Atmospheric Modeling System (RAMS), a numerical weather model developed at Colorado State University. WeatherFlow runs RAMS operationally on a Linux-based cluster. Cynthia Irvine is a Professor of Computer Science at the Naval Postgraduate School in Monterey, California. She received her Ph.D. from Case Western Reserve University and her B.A. in Physics from Rice University. She joined the faculty of the Naval Postgraduate School in 1994. Previously she worked in industry on the development of high assurance secure systems. In 2001, Dr. Irvine received the Naval Information Assurance Award. Dr. Irvine is the Director of the Center for Information Systems Security Studies and Research at the Naval Postgraduate School. She has served on special panels for NSF, DARPA, and OSD. In the area of computer security education Dr. Irvine has most recently served as the general chair of the Third World Conference on Information Security Education and the Fifth Workshop on Education in Computer Security. She co-chaired the NSF workshop on Cyber-security Workforce Needs Assessment and Educational Innovation and was a participant in the Computing Research Association/NSF sponsored Grand Challenges in Information Assurance meeting. She is a member of the editorial board of the Journal of Information Warfare and has served as a reviewer and/or program committee member of a variety of security related conferences. She has written over 100 papers and articles and has supervised the work of over 80 students. Professor Irvine is a member of the ACM, the AAS, a life member of the ASP, and a Senior Member of the IEEE. Timothy E. Levin is a Research Associate Professor at the Naval Postgraduate School. He has spent over 18 years working in the design, development, evaluation, and verification of secure computer systems, including operating systems, databases and networks. His current research interests include high assurance system design and analysis, development of models and methods for the dynamic selection of QoS security attributes, and the application of formal methods to the development of secure computer systems. Viktor K. Prasanna received his BS in Electronics Engineering from the Bangalore University and his MS from the School of Automation, Indian Institute of Science. He obtained his Ph.D. in Computer Science from the Pennsylvania State University in 1983. Currently, he is a Professor in the Department of Electrical Engineering as well as in the Department of Computer Science at the University of Southern California, Los Angeles. He is also an associate member of the Center for Applied Mathematical Sciences (CAMS) at USC. He served as the Division Director for the Computer Engineering Division during 1994–98. His research interests include parallel and distributed systems, embedded systems, configurable architectures and high performance computing. Dr. Prasanna has published extensively and consulted for industries in the above areas. He has served on the organizing committees of several international meetings in VLSI computations, parallel computation, and high performance computing. He is the Steering Co-chair of the International Parallel and Distributed Processing Symposium [merged IEEE International Parallel Processing Symposium (IPPS) and the Symposium on Parallel and Distributed Processing (SPDP)] and is the Steering Chair of the International Conference on High Performance Computing(HiPC). He serves on the editorial boards of the Journal of Parallel and Distributed Computing and the Proceedings of the IEEE. He is the Editor-in-Chief of the IEEE Transactions on Computers. He was the founding Chair of the IEEE Computer Society Technical Committee on Parallel Processing. He is a Fellow of the IEEE. Richard F. Freund is the originator of GridIQ’s network scheduling concepts that arose from mathematical and computing approaches he developed for the Department of Defense in the early 1980’s. Dr. Freund has over twenty-five years experience in computational mathematics, algorithm design, high performance computing, distributed computing, network planning, and heterogeneous scheduling. Since 1989, Dr. Freund has published over 45 journal articles in these fields. He has also been an editor of special editions of IEEE Computer and the Journal of Parallel and Distributed Computing. In addition, he is a founder of the Heterogeneous Computing Workshop, held annually in conjunction with the International Parallel Processing Symposium. Dr. Freund is the recipient of many awards, which includes the prestigious Department of Defense Meritorious Civilian Service Award in 1984 and the Lauritsen-Bennet Award from the Space and Naval Warfare Systems Command in San Diego, California.  相似文献   
74.
Human endogenous retrovirus K (HERV-K) is distinctive among the retroviruses in the human genome in that many HERV-K proviruses were inserted into the human germline after the human and chimpanzee lineages evolutionarily diverged [1, 2]. However, all full-length endogenous retroviruses described to date in humans are sufficiently old that all humans examined were homozygous for their presence [1]. Moreover, none are intact; all have lethal mutations [1, 3, 4]. Here, we describe the first endogenous retroviruses in humans for which both the full-length provirus and the preintegration site alleles are shown to be present in the human population today. One provirus, called HERV-K113, was present in about 30% of tested individuals, while a second, called HERV-K115, was found in about 15%. HERV-K113 has full-length open reading frames (ORFs) for all viral proteins and lacks any nonsynonymous substitutions in amino acid motifs that are well conserved among retroviruses. This is the first such endogenous retrovirus identified in humans. These findings indicate that HERV-K remained capable of reinfecting humans through very recent evolutionary times and that HERV-K113 is an excellent candidate for an endogenous retrovirus that is capable of reinfecting humans today.  相似文献   
75.
Risk alleles for complex diseases are widely spread throughout human populations. However, little is known about the geographic distribution and frequencies of risk alleles, which may contribute to differences in disease susceptibility and prevalence among populations. Here, we focus on Crohn's disease (CD) as a model for the evolutionary study of complex disease alleles. Recent genome-wide association studies and classical linkage analyses have identified more than 70 susceptible genomic regions for CD in Europeans, but only a few have been confirmed in non-European populations. Our analysis of eight European-specific susceptibility genes using HapMap data shows that at the NOD2 locus the CD-risk alleles are linked with a haplotype specific to CEU at a frequency that is significantly higher compared with the entire genome. We subsequently examined nine global populations and found that the CD-risk alleles spread through hitchhiking with a high-frequency haplotype (H1) exclusive to Europeans. To examine the neutrality of NOD2, we performed phylogenetic network analyses, coalescent simulation, protein structural prediction, characterization of mutation patterns, and estimations of population growth and time to most recent common ancestor (TMRCA). We found that while H1 was significantly prevalent in European populations, the H1 TMRCA predated human migration out of Africa. H1 is likely to have undergone negative selection because 1) the root of H1 genealogy is defined by a preexisting amino acid substitution that causes serious conformational changes to the NOD2 protein, 2) the haplotype has almost become extinct in Africa, and 3) the haplotype has not been affected by the recent European expansion reflected in the other haplotypes. Nevertheless, H1 has survived in European populations, suggesting that the haplotype is advantageous to this group. We propose that several CD-risk alleles, which destabilize and disrupt the NOD2 protein, have been maintained by natural selection on standing variation because the deleterious haplotype of NOD2 is advantageous in diploid individuals due to heterozygote advantage and/or intergenic interactions.  相似文献   
76.
We have surveyed 15 high-altitude adaptation candidate genes for signals of positive selection in North Caucasian highlanders using targeted re-sequencing. A total of 49 unrelated Daghestani from three ethnic groups (Avars, Kubachians, and Laks) living in ancient villages located at around 2,000 m above sea level were chosen as the study population. Caucasian (Adygei living at sea level, N = 20) and CEU (CEPH Utah residents with ancestry from northern and western Europe; N = 20) were used as controls. Candidate genes were compared with 20 putatively neutral control regions resequenced in the same individuals. The regions of interest were amplified by long-PCR, pooled according to individual, indexed by adding an eight-nucleotide tag, and sequenced using the Illumina GAII platform. 1,066 SNPs were called using false discovery and false negative thresholds of ~6%. The neutral regions provided an empirical null distribution to compare with the candidate genes for signals of selection. Two genes stood out. In Laks, a non-synonymous variant within HIF1A already known to be associated with improvement in oxygen metabolism was rediscovered, and in Kubachians a cluster of 13 SNPs located in a conserved intronic region within EGLN1 showing high population differentiation was found. These variants illustrate both the common pathways of adaptation to high altitude in different populations and features specific to the Daghestani populations, showing how even a mildly hypoxic environment can lead to genetic adaptation.  相似文献   
77.
The existence of many highly similar genes in the lymphocyte receptor gene loci makes them difficult to investigate, and the determination of phased "haplotypes" has been particularly problematic. However, V(D)J gene rearrangements provide an opportunity to infer the association of Ig genes along the chromosomes. The chromosomal distribution of H chain genes in an Ig genotype can be inferred through analysis of VDJ rearrangements in individuals who are heterozygous at points within the IGH locus. We analyzed VDJ rearrangements from 44 individuals for whom sufficient unique rearrangements were available to allow comprehensive genotyping. Nine individuals were identified who were heterozygous at the IGHJ6 locus and for whom sufficient suitable VDJ rearrangements were available to allow comprehensive haplotyping. Each of the 18 resulting IGHV│IGHD│IGHJ haplotypes was unique. Apparent deletion polymorphisms were seen that involved as many as four contiguous, functional IGHV genes. Two deletion polymorphisms involving multiple contiguous IGHD genes were also inferred. Three previously unidentified gene duplications were detected, where two sequences recognized as allelic variants of a single gene were both inferred to be on a single chromosome. Phased genomic data brings clarity to the study of the contribution of each gene to the available repertoire of rearranged VDJ genes. Analysis of rearrangement frequencies suggests that particular genes may have substantially different yet predictable propensities for rearrangement within different haplotypes. Together with data highlighting the extent of haplotypic variation within the population, this suggests that there may be substantial variability in the available Ab repertoires of different individuals.  相似文献   
78.
Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders.  相似文献   
79.
Human infants, like immature members of any species, must be highly selective in sampling information from their environment to learn efficiently. Failure to be selective would waste precious computational resources on material that is already known (too simple) or unknowable (too complex). In two experiments with 7- and 8-month-olds, we measure infants' visual attention to sequences of events varying in complexity, as determined by an ideal learner model. Infants' probability of looking away was greatest on stimulus items whose complexity (negative log probability) according to the model was either very low or very high. These results suggest a principle of infant attention that may have broad applicability: infants implicitly seek to maintain intermediate rates of information absorption and avoid wasting cognitive resources on overly simple or overly complex events.  相似文献   
80.
Organisms associated with another species may experience both costs and benefits from their partner. One of these costs is competition, which is the more likely if the two species are ecologically similar. Parabioses are associations between two ant species that share a nest and often attend the same food sources. Albeit parabioses are probably mutualistic, parabiotic partners may compete for food. We therefore investigated feeding niches and dietary overlap of two parabiotically associated ants in Borneo using cafeteria experiments and stable isotope analyses. The two species strongly differed in their food choices. While Crematogaster modiglianii mostly foraged at carbohydrate‐rich baits, Camponotus rufifemur preferred urea‐rich sources. Both species also consumed animal protein. The 15N concentration in Ca. rufifemur workers was consistently lower than in Cr. modiglianii. Camponotus rufifemur but not Cr. modiglianii possesses microbial endosymbionts, which can metabolize urea and synthesize essential amino acids. Its lower 15N signature may result from a relatively higher intake of plant‐based or otherwise 15N‐depleted nitrogen. Isotopic signatures of the two partners in the same parabiosis showed strongly parallel variation across nests. As we did not find evidence for spatial autocorrelation, this correlation suggests an overlap of food sources between the two ant species. Based on model simulations, we estimated a diet overlap of 22–66% for nitrogen sources and 45–74% for carbon sources. The overlap may arise from either joint exploitation of the same food sources or trophallactic exchange of food. This suggests an intense trophic interaction and potential for competition between the parabiotic partners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号