首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   107篇
  2021年   5篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   10篇
  2014年   15篇
  2013年   19篇
  2012年   28篇
  2011年   25篇
  2010年   22篇
  2009年   18篇
  2008年   25篇
  2007年   14篇
  2006年   19篇
  2005年   21篇
  2004年   13篇
  2003年   14篇
  2002年   25篇
  2001年   26篇
  2000年   29篇
  1999年   22篇
  1998年   11篇
  1997年   5篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   9篇
  1992年   22篇
  1991年   23篇
  1990年   19篇
  1989年   14篇
  1988年   20篇
  1987年   15篇
  1986年   13篇
  1985年   13篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1980年   8篇
  1979年   5篇
  1976年   8篇
  1974年   6篇
  1973年   4篇
  1971年   4篇
  1969年   5篇
  1964年   5篇
  1961年   4篇
  1951年   4篇
  1917年   6篇
排序方式: 共有712条查询结果,搜索用时 15 毫秒
101.
A dinucleotide repeat polymorphism at the HOX2B locus   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   
102.
103.
104.
Kidd GH  Pratt LH 《Plant physiology》1973,52(4):309-311
Examination of the phytochrome destruction reaction as a function of age in etiolated oat (Avena sativa L. cv. Garry) seedlings demonstrates that following illumination of 3-day-old shoots there is a lag, not observed in 4- or 5-day-old oats, prior to the onset of destruction. This light-mediated induction of the phytochrome destruction mechanism in 3-day-old shoots is inhibited by chloramphenicol, actinomycin D, and puromycin suggesting that protein synthesis is required. In 4-day-old shoots, actinomycin D and puromycin do not alter the kinetics of destruction while chloramphenicol partially inhibits the process. Thus, the inhibitors have a specific effect on the induction of the destruction mechanism but not its subsequent operation.  相似文献   
105.
106.
107.
108.
Posttranslational modification of proteins, which include both the enzymatic alterations of protein side chains and main-chain peptide bond connectivity, is a fundamental regulatory process that is crucial for almost every aspects of cell biology, including the virus-host cell interaction and the SARS-CoV-2 infection. The posttranslational modification of proteins has primarily been studied in cells and tissues in an intra-proteomic context (where both substrates and enzymes are part of the same species). However, the inter-proteomic posttranslational modifications of most of the SARS-CoV-2 proteins by the host enzymes and vice versa are largely unexplored in virus pathogenesis and in the host immune response. It is now known that the structural spike (S) protein of the SARS-CoV-2 undergoes proteolytic priming by the host serine proteases for entry into the host cells, and N- and O-glycosylation by the host cell enzymes during virion packaging, which enable the virus to spread. New evidence suggests that both SARS-CoV-2 and the host proteins undergo inter-proteomic posttranslational modifications, which play roles in virus pathogenesis and infection-induced immune response by hijacking the host cell signaling. The purpose of this minireview is to bring attention of the scientific community to recent cutting-edge discoveries in this understudied area. It is likely that a better insight into the molecular mechanisms involved may open new research directions, and thereby contribute to novel therapeutic modality development against the SARS-CoV-2. Here we briefly discuss the rationale and touch upon some unanswered questions in this context, especially those that require attention from the scientific community.  相似文献   
109.
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.  相似文献   
110.
Numerous phenotypic traits differ among inbred mice, and the genetic diversity of inbred strains has been exploited in studies of quantitative trait loci (QTL). Sequencing the mouse genome has resulted in improved tools for the study of QTL, but a comprehensive catalog of sequence variants between strains would be of great value in identifying and testing potentially causative alleles. A/J DNA was included in the Celera shotgun sequence of the mouse genome and C57BL/6 DNA was sequenced by an international consortium. We have resequenced A/J and B6 DNA to cover nearly all of the protein-coding portions of mouse Chromosome 16, revealing that there are 106 nonsynonymous substitutions in 74 of the 779 genes on the chromosome. The pattern of substitution is more similar to the spectrum of benign polymorphism in the human population than it is to human disease-causing mutations. In mouse, polymorphic variants tend to be associated with one another on large haplotypes; this pattern also holds true for nonsynonymous polymorphism. However, sufficient fragmentation of haplotypes is present to suggest that only a very-high-resolution haplotype map will enable effective inference of alleles in additional strains. SNP data have been submitted to dbSNP with ssid No. 46531525-46532013.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号