首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2019篇
  免费   188篇
  国内免费   2篇
  2023年   3篇
  2022年   19篇
  2021年   43篇
  2020年   30篇
  2019年   41篇
  2018年   70篇
  2017年   54篇
  2016年   94篇
  2015年   121篇
  2014年   134篇
  2013年   175篇
  2012年   167篇
  2011年   181篇
  2010年   121篇
  2009年   113篇
  2008年   139篇
  2007年   125篇
  2006年   103篇
  2005年   116篇
  2004年   72篇
  2003年   63篇
  2002年   51篇
  2001年   32篇
  2000年   14篇
  1999年   19篇
  1998年   15篇
  1997年   8篇
  1996年   6篇
  1995年   9篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   4篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1968年   3篇
  1965年   3篇
  1960年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有2209条查询结果,搜索用时 15 毫秒
41.
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.  相似文献   
42.
c-Jun NH2-terminal kinases (JNKs) and phosphatidylinositol 3-kinase (PI3-K) play critical roles in chronic diseases such as cancer, type II diabetes, and obesity. We describe here the binding of quercetagetin (3,3′,4′,5,6,7-hydroxyflavone), related flavonoids, and SP600125 to JNK1 and PI3-K by ATP-competitive and immobilized metal ion affinity-based fluorescence polarization assays and measure the effect of quercetagetin on JNK1 and PI3-K activities. Quercetagetin attenuated the phosphorylation of c-Jun and AKT, suppressed AP-1 and NF-κB promoter activities, and also reduced cell transformation. It attenuated tumor incidence and reduced tumor volumes in a two-stage skin carcinogenesis mouse model.Our crystallographic structure determination data show that quercetagetin binds to the ATP-binding site of JNK1. Notably, the interaction between Lys55, Asp169, and Glu73 of JNK1 and the catechol moiety of quercetagetin reorients the N-terminal lobe of JNK1, thereby improving compatibility of the ligand with its binding site. The results of a theoretical docking study suggest a binding mode of PI3-K with the hydroxyl groups of the catechol moiety forming hydrogen bonds with the side chains of Asp964 and Asp841 in the p110γ catalytic subunit. These interactions could contribute to the high inhibitory activity of quercetagetin against PI3-K. Our study suggests the potential use of quercetagetin in the prevention or therapy of cancer and other chronic diseases.  相似文献   
43.
BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.  相似文献   
44.
To explore the physiological significance of N‐glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N‐acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N‐glycan maturation and accumulated high‐mannose N‐glycans. Phenotypic analyses revealed that gnt1 shows defective post‐seedling development and incomplete cell wall biosynthesis, leading to symptoms such as failure in tiller formation, brittle leaves, reduced cell wall thickness, and decreased cellulose content. The developmental defects of gnt1 ultimately resulted in early lethality without transition to the reproductive stage. However, callus induced from gnt1 seeds could be maintained for periods, although it exhibited a low proliferation rate, small size, and hypersensitivity to salt stress. Shoot regeneration and dark‐induced leaf senescence assays indicated that the loss of GnTI function results in reduced sensitivity to cytokinin in rice. Reduced expression of A‐type O. sativa response regulators that are rapidly induced by cytokinins in gnt1 confirmed that cytokinin signaling is impaired in the mutant. These results strongly support the proposed involvement of N‐glycan maturation in transport as well as in the function of membrane proteins that are synthesized via the endomembrane system.  相似文献   
45.
In Parkinson’s disease, the motor impairments are mainly caused by the death of dopaminergic neurons. Among the enzymes which are involved in the biosynthesis and catabolism of dopamine, monoamine oxidase B (MAO-B) has been a therapeutic target of Parkinson’s disease. However, due to the undesirable adverse effects, development of alternative MAO-B inhibitors with greater optimal therapeutic potential towards Parkinson’s disease is urgently required. In this study, we designed and synthesized the oxazolopyridine and thiazolopyridine derivatives, and biologically evaluated their inhibitory activities against MAO-B. Structure–activity relationship study revealed that the piperidino group was the best choice for the R1 amino substituent to the oxazolopyridine core structure and the activities of the oxazolopyridines with various phenyl rings were between 267.1 and 889.5 nM in IC50 values. Interestingly, by replacement of the core structure from oxazolopyrine to thiazolopyridine, the activities were significantly improved and the compound 1n with the thiazolopyridine core structure showed the most potent activity with the IC50 value of 26.5 nM. Molecular docking study showed that van der Waals interaction in the human MAO-B active site could explain the enhanced inhibitory activities of thiazolopyridine derivatives.  相似文献   
46.
Abnormal regulation of Ca2+ mediates tumorigenesis and Ca2+ channels are reportedly deregulated in cancers, indicating that regulating Ca2+ signaling in cancer cells is considered as a promising strategy to treat cancer. However, little is known regarding the mechanism by which Ca2+ affects cancer cell death. Here, we show that 20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol (20-GPPD), a metabolite of ginseng saponin, causes apoptosis of colon cancer cells through the induction of cytoplasmic Ca2+. 20-GPPD decreased cell viability, increased annexin V-positive early apoptosis and induced sub-G1 accumulation and nuclear condensation of CT-26 murine colon cancer cells. Although 20-GPPD-induced activation of AMP-activated protein kinase (AMPK) played a key role in the apoptotic death of CT-26 cells, LKB1, a well-known upstream kinase of AMPK, was not involved in this activation. To identify the upstream target of 20-GPPD for activating AMPK, we examined the effect of Ca2+ on apoptosis of CT-26 cells. A calcium chelator recovered 20-GPPD-induced AMPK phosphorylation and CT-26 cell death. Confocal microscopy showed that 20-GPPD increased Ca2+ entry into CT-26 cells, whereas a transient receptor potential canonical (TRPC) blocker suppressed Ca2+ entry. When cells were treated with a TRPC blocker plus an endoplasmic reticulum (ER) calcium blocker, 20-GPPD-induced calcium influx was completely inhibited, suggesting that the ER calcium store, as well as TRPC, was involved. In vivo mouse CT-26 allografts showed that 20-GPPD significantly suppressed tumor growth, volume and weight in a dose-dependent manner. Collectively, 20-GPPD exerts potent anticarcinogenic effects on colon carcinogenesis by increasing Ca2+ influx, mainly through TRPC channels, and by targeting AMPK.  相似文献   
47.
Trilinoleoylglycerol (TL) was autoxidized at 37°C in the dark. Monohydroperoxides (MHP) obtained from the oxidized products were analyzed by high performance liquid chromatography (HPLC). Several peaks which appeared in the chromatogram were identified by infrared (IR), gas chromatography mass spectrometry (GC-MS) and enzymatic hydrolysis. Some positional and geometrical isomers of their hydroperoxy fatty acid components were separated using both absorption and reversed phase systems. Furthermore, 1-hydroperoxylinoleoyl-2,3-dilinoleoyl-glycerol and 1,3-dilinoleoyl-2-hydroperoxylinoleoylglycerol were partly separated by HPLC using an absorption system. MHP obtained from autoxidized corn oil, safflower oil and soybean oil were separated into some peaks by HPLC, although resolution into the individual isomers was incomplete. When oxidized oils were subjected to HPLC analysis directly, a linear relationship was observed between the peak areas of MHP and peroxide value in the range of 10 ~ 50 meq/kg.  相似文献   
48.
The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1−/−) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1−/− mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1−/− mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.  相似文献   
49.
The precise mechanism of TGFβ1 signaling in the progression of non-alcoholic steatohepatitis (NASH) has remained unclear. In particular, a potential regulatory mechanism by which PKCδ affects profibrogenic gene expression had never been explored. In this study, therefore, the role of PKCδ in TGFβ1 mediated α-SMA expression was investigated using NASH model mice. In preparation of the NASH model, male C57BL6/J mice were fed a methionine-choline-deficient (MCD) diet for 3 weeks, after which time they were intraperitoneally injected with lipopolysaccharide (LPS). In addition, Tlr4Lps-d (CH3/HeJ) mice were used to demonstrate the TGFβ1 signaling’s dependency on TLR4 induction. Liver histology and hepatic hepatitis markers were investigated, and hepatic gene expression levels were determined by real-time PCR. Acute liver injury by LPS injection specifically elevated not only α-SMA expression but also phospho-PKCδ in this model. In contrast, Tlr4Lps-d (CH3/HeJ) and blockade of TGFβ1 receptor by SB431542 resulted in a significant reduction of PKCδ activation and α-SMA expression. Moreover, the TGFβ1-induced α-SMA production was significantly reduced by a specific PKCδ inhibitor. These findings suggested that PKCδ plays a critical role in TGFβ1-induced α-SMA production in a NASH model. Thus, this was the first demonstration of the involvement of PKCδ in the regulation of α-SMA expression in NASH liver tissues, and the impaired induction of PKCδ phosphorylation by LPS in a steatohepatitis condition. Interestingly, treatment by PKCδ inhibitor caused dramatic reduction of myofibroblast activation, indicating that PKCδ represents a promising target for treating NASH.  相似文献   
50.

Background

Lactic acidosis is a common cause of high anion gap metabolic acidosis. Sodium bicarbonate may be considered for an arterial pH <7.15 but paradoxically depresses cardiac performance and exacerbates acidosis by enhancing lactate production. This study aimed to evaluate the cause and mortality rate of lactic acidosis and to investigate the effect of factors, including sodium bicarbonate use, on death.

Methods

We conducted a single center analysis from May 2011 through April 2012. We retrospectively analyzed 103 patients with lactic acidosis among 207 patients with metabolic acidosis. We used SOFA and APACHE II as severity scores to estimate illness severity. Multivariate logistic regression analysis and Cox regression analysis models were used to identify factors that affect mortality.

Results

Of the 103 patients with a mean age of 66.1±11.4 years, eighty-three patients (80.6%) died from sepsis (61.4%), hepatic failure, cardiogenic shock and other causes. The percentage of sodium bicarbonate administration (p = 0.006), catecholamine use, ventilator care and male gender were higher in the non-survival group than the survival group. The non-survival group had significantly higher initial and follow-up lactic acid levels, lower initial albumin, higher SOFA scores and APACHE II scores than the survival group. The mortality rate was significantly higher in patients who received sodium bicarbonate. Sodium bicarbonate administration (p = 0.016) was associated with higher mortality. Independent factors that affected mortality were SOFA score (Exp (B) = 1.72, 95% CI = 1.12–2.63, p = 0.013) and sodium bicarbonate administration (Exp (B) = 6.27, 95% CI = 1.10–35.78, p = 0.039).

Conclusions

Lactic acidosis, which has a high mortality rate, should be evaluated in patients with metabolic acidosis. In addition, sodium bicarbonate should be prescribed with caution in the case of lactic acidosis because sodium bicarbonate administration may affect mortality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号