首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30227篇
  免费   2317篇
  国内免费   28篇
  32572篇
  2023年   101篇
  2022年   351篇
  2021年   566篇
  2020年   355篇
  2019年   438篇
  2018年   722篇
  2017年   567篇
  2016年   946篇
  2015年   1550篇
  2014年   1683篇
  2013年   1958篇
  2012年   2486篇
  2011年   2320篇
  2010年   1528篇
  2009年   1329篇
  2008年   1908篇
  2007年   1680篇
  2006年   1498篇
  2005年   1380篇
  2004年   1324篇
  2003年   1103篇
  2002年   1088篇
  2001年   823篇
  2000年   799篇
  1999年   560篇
  1998年   250篇
  1997年   200篇
  1996年   170篇
  1995年   165篇
  1994年   124篇
  1993年   123篇
  1992年   248篇
  1991年   201篇
  1990年   167篇
  1989年   187篇
  1988年   148篇
  1987年   143篇
  1986年   134篇
  1985年   125篇
  1984年   103篇
  1983年   80篇
  1982年   63篇
  1980年   45篇
  1979年   71篇
  1978年   72篇
  1977年   53篇
  1976年   73篇
  1975年   64篇
  1974年   54篇
  1973年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Nickel(II)-reconstituted hemoglobin (NiHb) and myoglobin (NiMb) and model Ni porphyrins have been investigated by Soret-resonance Raman difference spectroscopy. Two sets of frequencies for the oxidation-state and core-size marker lines in the region from 1300 to 1700 cm-1 indicate two distinct sites in NiHb. Only one of these sites is evident in the Raman spectra of NiMb. This result is consistent with the UV-visible absorption spectrum of NiHb, which shows two Soret bands at 397 and 420 nm and one Soret at 424 nm for NiMb. Excitation at the blue Soret component of NiHb with 406.7-nm laser radiation preferentially enhances the set of Raman marker lines typical of Ni-protoporphyrin IX [Ni(ProtoP )] in noncoordinating solvents. The wavelength of the blue Soret component and the Raman spectrum indicate four-coordination for this site in NiHb. Laser excitation in the red Soret band enhances a set of lines whose frequencies are compatible with neither four- nor six-coordinate frequencies but are intermediate between the two. The red Soret band of the proteins is also considerably less red shifted than six-coordinate Ni-porphyrin models. These results suggest that Ni in the second site possesses a single axial ligand. Raman spectra of 64Ni-reconstituted and natural abundance Ni-reconstituted hemoglobins, obtained simultaneously in a Raman difference spectrometer, have identified the Ni-ligand stretch at 236 cm-1. The line shifts to 229 cm-1 for the 64Ni-reconstituted Hb. For a pure Ni-ligand stretch a 10-cm-1 shift would be predicted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
82.
Target-sensitive immunoliposomes: preparation and characterization   总被引:2,自引:0,他引:2  
R J Ho  B T Rouse  L Huang 《Biochemistry》1986,25(19):5500-5506
A novel target-sensitive immunoliposome was prepared and characterized. In this design, target-specific binding of antibody-coated liposomes was sufficient to induce bilayer destabilization, resulting in a site-specific release of liposome contents. Unilamellar liposomes were prepared by using a small quantity of palmitoyl-immunoglobulin G (pIgG) to stabilize the bilayer phase of the unsaturated dioleoylphosphatidylethanolamine (PE) which by itself does not form stable liposomes. A mouse monoclonal IgG antibody to the glycoprotein D of Herpes simplex virus (HSV) and PE were used in this study. A minimal coupling stoichiometry of 2.2 palmitic acids per IgG was essential for the stabilization activity of pIgG. In addition, the minimal pIgG to PE molar ratio for stable liposomes was 2.5 X 10(-4). PE immunoliposomes bound with HSV-infected mouse L929 cells with an apparent Kd of 1.00 X 10(-8) M which was approximately the same as that of the native antibody. When 50 mM calcein was encapsulated in the PE immunoliposomes as an aqueous marker, binding of the liposomes to HSV-infected cells resulted in a cell concentration dependent lysis of the liposomes as detected by the release of the encapsulated calcein. Neither uninfected nor Sendai virus infected cells caused a significant amount of calcein release. Therefore, the release of calcein from PE immunoliposomes was target specific. Dioleoylphosphatidylcholine immunoliposomes were not lysed upon contact with infected cells under the same conditions, indicating that PE was essential for the target-specific liposome destabilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
83.
Carboxypeptidase and protease activities of hormone-treated barley (Hordeum vulgare cv Himalaya) aleurone layers were investigated using the substrates N-carbobenzoxy-Ala-Phe and hemoglobin. A differential effect of gibberellic acid (GA3) on these activities was observed. The carboxypeptidase activity develops in the aleurone layers during imbibition without the addition of hormone, while the release of this enzyme to the incubation medium is enhanced by GA3. In contrast, GA3 is required for both the production of protease activity in the aleurone layer and its secretion. The time course for development of protease activity in response to GA3 is similar to that observed for α-amylase. Treating aleurone layers with both GA3 and abscisic acid prevents all the GA3 effects described above. Carboxypeptidase activity is maximal between pH 5 and 6, and is inhibited by diisopropylfluorophosphate and p-hydroxymercuribenzoate. We have observed three protease activities against hemoglobin which differ in charge but are all 37 kilodaltons in size on sodium dodecyl sulfate polyacrylamide gels. The activity of the proteases can be inhibited by sulfhydryl protease inhibitors, such as bromate and leupeptin, yet is enhanced by 2-fold with 2-mercaptoethanol. In addition, these enzymes appear to be active against the wheat and barley storage proteins, gliadin and hordein, respectively. On the basis of these characteristics and the time course of GA3 response, it is concluded that the proteases represent the GA3-induced, de novo synthesized proteases that are mainly responsible for the degradation of endosperm storage proteins.  相似文献   
84.
Brown PH  Ho TH 《Plant physiology》1986,82(3):801-806
Incubation of barley (Hordeum vulgare L. cv Himalaya) half-seeds with gibberellic acid enhances the secretion of ribonuclease and deoxyribonuclease from aleurone tissue (MJ Chrispeels, JE Varner 1967 Plant Physiol 42: 398-406; L Taiz, JE Starks 1977 Plant Physiol 60: 182-189). These activities were over 50-fold greater in medium of half-seeds incubated with gibberellic acid than in control medium. Ribonuclease and deoxyribonuclease activities initially appeared in the medium 24 to 48 hours after hormone induction and increased for up to 96 hours. Both activities had a pH optimum of 6.0 and a temperature optimum of 55°C. When the medium from gibberellic acid-treated half-seeds was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, the major ribonuclease and deoxyribonuclease activity bands comigrated. The two enzyme activities remained associated throughout a 2,700-fold purification employing ammonium sulfate fractionation, Heparin-Agarose affinity chromatography, and Reactive Blue 2-Agarose affinity chromatography. Also accompanying the ribonuclease and deoxyribonuclease activities throughout purification was the ability to hydrolyze the 3′-phosphoester linkage of 3′-AMP. The purified protein was composed of a single polypeptide with an apparent molecular weight of 36 kilodaltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. It is concluded that in response to gibberellic acid, barley aleurone tissue secretes a nuclease having ribonuclease, deoxyribonuclease, and 3′-nucleotidase activities.  相似文献   
85.
The formation and removal of UV-induced pyrimidine dimers were measured in restriction fragments near and within the essential dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells in order to map the genomic fine structure of DNA repair. Dimer frequencies were determined at 0, 8, and 24 h after irradiating the cells with 20 J/m2 UV light (254 nm). Within 8 h, the cells had removed more than 40% of the dimers from sequences near the 5' end of the gene, somewhat fewer from the 3' end, but only 2% from the 3' flanking region and 10% from a region upstream from the gene. The corresponding extent of repair in the genome as a whole is 5-10% in the 8-h period. Isoschizomeric restriction enzyme analysis was used to detect the level of methylation in the fragments in which repair was measured. We found that the only hypomethylated sites in and around the DHFR gene were in the fragment near its 5' end, which displayed maximal DNA repair efficiency. The size of the region of preferential DNA repair at the DHFR locus appears to be in the range of 50-80 kilobases, and this finding is discussed in relation to genomic domains and the structure of mammalian chromatin.  相似文献   
86.
Penicillin-binding protein (PBP)-2 and the RodA protein are known to function in determining the rod shape of Escherichia coli cells. Peptidoglycan biosynthetic reactions that required these two proteins were demonstrated in the membrane fraction prepared from an E. coli strain that overproduced both of these two proteins and which lacked PBP-1B activity (the major peptidoglycan synthetase activity in the normal E. coli membranes). The cross-linked peptidoglycan was synthesized from UDP-N-acetylmuramylpentapeptide and UDP-N-acetylglucosamine in the presence of a high concentration of cefmetazole that inhibited all of PBPs except PBP-2. The peptidoglycan was synthesized via a lipid intermediate and showed up to 30% cross-linking. The cross-linking reaction was strongly inhibited by the amidinopenicillin, mecillinam, and by other beta-lactam antibiotics that have a high affinity for PBP-2, but not by beta-lactams that had very low affinity for PBP-2. The formation of peptidoglycan required the presence of high levels of both PBP-2 and the RodA protein in the membranes, but it is unclear which of the two proteins was primarily responsible for the extension of the glycan chains (transglycosylation). However, the sensitivity of the cross-linking reaction to specific beta-lactam antibiotics strongly suggested that it was catalyzed by PBP-2. The transglycosylase activity of the membranes was sensitive to enramycin and vancomycin and was unusual in being stimulated greatly by a high concentration of a chelating agent.  相似文献   
87.
A L Stone  J Y Park  R E Martenson 《Biochemistry》1985,24(23):6666-6673
Myelin basic protein (MBP) is a major protein constituent of the myelin sheath of the central nervous system, where it is believed to have functional alpha-helical segments. One element of the function of the protein might be "conformational adaptability" of specific regions of its amino acid sequence, since the purified protein appears to be largely devoid of ordered structure. To pursue this question, low-ultraviolet circular dichroism (CD) spectroscopy was conducted on the sequential thrombic peptides 1-95 and 96-168 of the protein in the presence of 0-92% trifluoroethanol (TFE), a solvent known to promote stable secondary structures in polypeptides. The series of CD spectra of the oligopeptides were subjected to a computerized best-fit analysis of four peptide conformations, the alpha-helix, beta-structure, beta-turn, and nonordered form. Agreement between experimental and best-fit composite spectra was achieved when standard CD curves of peptide conformations were derived from known theoretical spectra and experimental spectra of polypeptides. In dilute buffer alone, oligopeptides 1-95 and 96-168 evidence no alpha-helix but significant beta-structure (18% and 23%, respectively), as well as a predominant, extended nonordered conformation. However, the two parts of the protein differed in conformational adaptability. From 0% to 30% TFE, 96-168 exhibited concomitant transitions to 10% helix and 32% beta-structure from the nonordered form. In contrast, in 10-30% TFE, 1-95 underwent a transition to approximately 21% helix with partial loss of beta-structure as well as nonordered form; higher concentrations of TFE (40-75%) promoted additional transitions to both helix and beta-structure (totaling 33% and 25%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
88.
Aequorin, a Ca(II)-sensitive bioluminescent protein from jellyfish, emits light at 469 nm from an excited state of a substituted pyrazine (oxyluciferin) which results from the oxidation of a chromophore molecule that is noncovalently bound to the protein. The chromophore is oxidized when Ca(II) or other activating metal ions are bound by aequorin. In the absence of Ca(II), spontaneous emission of light, referred to as Ca(II)-independent light emission, occurs at a rate less than 10(-6) of that for Ca(II)-induced emission. Proton nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence were used to study structural changes of aequorin accompanying Ca(II)-independent light emission. Time course studies by 1H NMR and CD demonstrate that as a result of Ca(II)-independent light emission, aequorin progressively changes from a rigid, fully active form showing little segmental mobility to a practically unfolded, discharged (i.e., inactive) form in which a number of amino acid residues are significantly mobile. This slow discharged protein (SDP) is distinct in nature and conformation from aequorin which has been discharged by Ca(II), i.e., the blue fluorescent protein. The rate of Ca(II)-independent discharge of aequorin is substantially reduced in the presence of excess Mg(II); the time constant for inactivation at 5 degrees C is 30 days with no Mg(II) present and 70 days with Mg(II) present. The NMR spectra are nearly identical at a given stage of inactivation whether or not Mg(II) is present. Oxyluciferin remains bound to SDP. If it is removed, however, by column chromatography, the resulting apo-SDP partially refolds, and the segmental mobility acquired in the formation of SDP is significantly attenuated particularly for some of the aromatic amino acid residues.  相似文献   
89.
The localization of the active site of penicillin-binding protein 5 from the dacA mutant of Escherichia coli strain TMRL 1222 has been determined. The protein was purified to homogeneity and labeled with [14C] penicillin G. The labeled protein was digested with trypsin, and the active site tryptic peptide was purified by a combination of gel filtration and high-pressure liquid chromatography. Sequencing of the purified [14C]penicilloyl peptide yielded the sequence Arg-Asp-Pro-Ala-Ser-Leu-Thr-Lys, which corresponds to residues 40-47 of the gene sequence (Broome-Smith, J., Edelman, A., and Spratt, B. G. (1983) in The Target of Penicillin (Hakenbeck, R., Holtje, J.-V., and Labischinski, H., eds) pp. 403-408, Walter de Gruyter, Berlin). The catalytic amino acid residue that forms a covalent bond with penicillin was identified by treating the purified [14C]penicilloyl peptide with a mixture of proteases and then separating the radioactive products using high-pressure liquid chromatography. Analysis of the radioactive peaks by amino acid analysis confirmed that it is the serine residue that reacts with the beta-lactam ring of penicillin.  相似文献   
90.
The developmental changes of prostaglandin (PG) synthesizing enzymes in the digestive system (stomach and small intestine) and the immune system (spleen and thymus) of rats were investigated. In all the digestive organs, the predominant PG produced from PGH2 changed at around 2 weeks after birth to another PG. Further, the predominant activities of PG synthesizing enzymes were different organ by organ in the digestive system. In the case of the immune system, only the activity of PGD2 synthesizing enzyme displayed a significant increase during development and the activities of other PG synthesizing enzymes remained insignificant throughout the development. These results suggest that PGs may play important roles during the development of each organ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号