首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1199篇
  免费   99篇
  国内免费   1篇
  1299篇
  2023年   6篇
  2022年   19篇
  2021年   31篇
  2020年   4篇
  2019年   26篇
  2018年   28篇
  2017年   28篇
  2016年   35篇
  2015年   57篇
  2014年   61篇
  2013年   67篇
  2012年   101篇
  2011年   86篇
  2010年   66篇
  2009年   48篇
  2008年   67篇
  2007年   64篇
  2006年   56篇
  2005年   53篇
  2004年   52篇
  2003年   39篇
  2002年   34篇
  2001年   23篇
  2000年   26篇
  1999年   21篇
  1998年   25篇
  1997年   18篇
  1996年   16篇
  1995年   9篇
  1994年   6篇
  1993年   5篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   11篇
  1975年   4篇
  1973年   5篇
  1971年   5篇
  1970年   3篇
  1968年   4篇
  1967年   4篇
排序方式: 共有1299条查询结果,搜索用时 0 毫秒
51.
52.
53.
The human major histocompatibility complex class I antigen HLA‐B*2705 binds several sequence‐related peptides (pVIPR, RRKWRRWHL; pLPM2, RRRWRRLTV; pGR, RRRWHRWRL). Cross‐reactivity of cytotoxic T cells (CTL) against these HLA‐B*2705:peptide complexes seemed to depend on a particular peptide conformation that is facilitated by the engagement of a crucial residue within the binding groove (Asp116), associated with a noncanonical bulging‐in of the middle portion of the bound peptide. We were interested whether a conformational reorientation of the ligand might contribute to the lack of cross‐reactivity of these CTL with a peptide derived from voltage‐dependent calcium channel α1 subunit (pCAC, SRRWRRWNR), in which the C‐terminal peptide residue pArg9 could engage Asp116. Analyses of the HLA‐B*2705:pCAC complex by X‐ray crystallography at 1.94 Å resolution demonstrated that the peptide had indeed undergone a drastic reorientation, leading it to adopt a canonical binding mode accompanied by the loss of molecular mimicry between pCAC and sequence‐related peptides such as pVIPR, pLMP2, and pGR. This was clearly a consequence of interactions of pArg9 with Asp116 and other F‐pocket residues. Furthermore, we observed an unprecedented reorientation of several additional residues of the HLA‐B*2705 heavy chain near the N‐terminal region of the peptide, including also the presence of double conformations of two glutamate residues, Glu63 and Glu163, on opposing sides of the peptide binding groove. Together with the Arg‐Ser exchange at peptide position 1, there are thus multiple structural reasons that may explain the observed failure of pVIPR‐directed, HLA‐B*2705‐restricted CTL to cross‐react with HLA‐B*2705:pCAC complexes.  相似文献   
54.
Rice blast, caused by the pathogen Magnaporthe oryzae, is a serious hindrance to rice production and has emerged as an important model for the characterization of molecular mechanisms relevant to pathogenic development in plants. Similar to other pathogenic fungi, conidiation plays a central role in initiation of M.oryzae infection and spread over a large area. However, relatively little is known regarding the molecular mechanisms that underlie conidiation in M. oryzae. To better characterize these mechanisms, we identified a conidiation-defective mutant, ATMT0225B6 (MoCDC15(T-DNA)), in which a T-DNA insertion disrupted a gene that encodes a homolog of fission yeast cdc15, and generated a second strain containing a disruption in the same allele (ΔMoCDC15(T-DNA)). The cdc15 gene has been shown to act as a coordinator of the cell cycle in yeast. Functional analysis of the MoCDC15(T-DNA) and ΔMoCDC15(T-DNA) mutants revealed that MoCDC15 is required for conidiation, preinfection development and pathogenicity in M. oryzae. Conidia from these mutants were viable, but failed to adhere to hydrophobic surface, a crucial step required for subsequent pathogenic development. All phenotypic defects observed in mutants were rescued in a strain complemented with wild type MoCDC15. Together, these data indicate that MoCDC15 functions as a coordinator of several biological processes important for pathogenic development in M. oryzae.  相似文献   
55.
56.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   
57.
The molybdenum centre of spinach (Spinacia oleracea) nitrate reductase has been investigated by e.p.r. spectroscopy of molybdenum(V) in reduced forms of the enzyme. The resting enzyme gives no signals attributable to Mo(V). However, on reduction with NADH, Mo(V) signals appeared at relatively short reaction times but decreased again on prolonged exposure to excess of the substrate as the enzyme was further reduced. On brief treatment of such samples with nitrate, Mo(V) signals reappeared but disappeared again on longer exposure to excess nitrate as the enzyme became fully reoxidized. Detailed investigation of the signals carried out in both 1H2O and 2H2O revealed the presence of two signal-giving species, referred to as 'signal A' and 'signal B', analogous to corresponding signals from nitrate reductase from Escherichia coli and from liver sulphite oxidase. Signal A has gav. 1.9767 and shows coupling to a single proton, exchangeable with the solvent, with A(1H)av. 1.3mT, whereas signal B shows no more than weak coupling to protons. Investigation of interconversion between the two species indicated that decreasing the pH from 8.0 to 6.7 had little effect, but that signal A was favoured by the presence of Cl-. This suggests, by analogy with recent work on sulphite oxidase by Bray, Gutteridge, Lamy & Wilkinson [Biochem. J. (1983) 211, 227-236] that Cl- is a ligand of molybdenum in the species giving signal A.  相似文献   
58.
Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.  相似文献   
59.
Over the past several years, considerable progress has been made in the development of gene therapy as a therapeutic strategy for a variety of inherited metabolic diseases, including neuropathic lysosomal storage disorders (LSDs). The premise of gene therapy for this group of diseases is borne of findings that genetic modification of a subset of cells can provide a more global benefit by virtue of the ability of the secreted lysosomal enzymes to effect cross-correction of adjacent and distal cells. Preclinical studies in small and large animal models of these disorders support the application of either a direct in vivo approach using recombinant adeno-associated viral vectors or an ex vivo strategy using lentiviral vector-modified hematopoietic stem cells to correct the neurological component of these diseases. Early clinical studies utilizing both approaches have begun or are in late-stage planning for a small number of neuropathic LSDs. Although initial indications from these studies are encouraging, it is evident that second-generation vectors that exhibit a greater safety profile and transduction activity may be required before this optimism can be fully realized. Here, I review recent progress and the remaining challenges to treat the neurological aspects of various LSDs using this therapeutic paradigm.  相似文献   
60.
pH is a ubiquitous regulator of biological activity, including protein‐folding, protein‐protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH‐dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi‐site λ‐dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi‐site λ‐dynamics, and designed novel biasing potentials to ensure that the physical end‐states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH‐dependent properties of proteins such as the Hen‐Egg White Lysozyme (HEWL), binding domain of 2‐oxoglutarate dehydrogenase (BBL) and N‐terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH‐dependent properties of both major class of biomolecules—proteins and nucleic acids is now possible. Proteins 2014; 82:1319–1331. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号