首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   37篇
  国内免费   1篇
  2024年   2篇
  2023年   4篇
  2022年   10篇
  2021年   47篇
  2020年   16篇
  2019年   15篇
  2018年   13篇
  2017年   9篇
  2016年   18篇
  2015年   29篇
  2014年   32篇
  2013年   43篇
  2012年   42篇
  2011年   36篇
  2010年   37篇
  2009年   23篇
  2008年   24篇
  2007年   32篇
  2006年   23篇
  2005年   15篇
  2004年   21篇
  2003年   15篇
  2002年   11篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
排序方式: 共有590条查询结果,搜索用时 31 毫秒
71.
Sphingosine 1-phosphate (S1P) produced by sphingosine kinase (SPHK) is implicated in acute immunoresponses, however, mechanisms of SPHK/S1P signaling in the pathogenesis of bronchial asthma are poorly understood. In this study, we hypothesized that SPHK inhibition could ameliorate lung inflammation in ovalbumin (OVA)-challenged mouse lungs. Six- to eight-week-old C57BL/6J mice were sensitized and exposed to OVA for 3 consecutive days. Twenty-four hours later, mice lungs and bronchoalveolar lavage (BAL) fluid were analyzed. For an inhibitory effect, either of the two different SPHK inhibitors, N,N-dimethylsphingosine (DMS) or SPHK inhibitor [SK-I; 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole], was nebulized for 30 min before OVA inhalation. OVA inhalation caused S1P release into BAL fluid and high expression of SPHK1 around bronchial epithelial walls and inflammatory areas. DMS or SK-I inhalation resulted in a decrease in S1P amounts in BAL fluid to basal levels, accompanied by decreased eosinophil infiltration and peroxidase activity. The extent of inhibition caused by DMS inhalation was higher than that caused by SK-I. Like T helper 2 (Th2) cytokine release, OVA inhalation-induced increase in eotaxin expression was significantly suppressed by DMS pretreatment both at protein level in BAL fluid and at mRNA level in lung homogenates. Moreover, bronchial hyperresponsiveness to inhaled methacholine and goblet cell hyperplasia were improved by SPHK inhibitors. These data suggest that the inhibition of SPHK affected acute eosinophilic inflammation induced in antigen-challenged mouse model and that targeting SPHK may provide a novel therapeutic tool to treat bronchial asthma.  相似文献   
72.
One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL4 with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL4 colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL4 is not hampered. However, in the case of KL4, distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a “miscibility switch” in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability.  相似文献   
73.
74.
75.
This study assessed the protective effects of Cinnamomum cassia (cinnamon) bark extract in rats exposed to titanium dioxide nanoparticles or titanium dioxide bulk salt. For in vivo evaluation of the ameliorative role of the cinnamon extract, the experimental groups were orally administered with the cinnamon extract at different dose levels (50 or 100 or 150 mg/kg bodyweight) along with the subcutaneous injections of 150 mg/kg bodyweight titanium dioxide nanoparticles or titanium dioxide bulk salt. The extract showed significant ameliorative role on the antioxidant system in response to elevated levels of titanium dioxide nanoparticles or titanium dioxide bulk salt-induced oxidative stress. It aided in the recovery of the antioxidant system as well as protective role in histological damages and some haematological parameters in the rat liver treated with titanium dioxide nanoparticles or titanium dioxide bulk salt.  相似文献   
76.
DNA topoisomerase I is a major cellular target for antitumor indolocarbazole derivatives (IND) such as the antibiotic rebeccamycin and the synthetic analogue NB-506 which is undergoing phase I clinical trials. We have investigated the mechanism of topoisomerase I inhibition by a rebeccamycin analogue, R-3, using the wild-type human topoisomerase I and a well-characterized recombinant enzyme, F361S. The catalytic activity of this mutant remains fully intact, but the enzyme is resistant to inhibition by camptothecin (CPT). Here we show that the mutated enzyme is cross-resistant to the rebeccamycin analogue. Despite their profound structural differences, CPT and R-3 interfere similarly with the activity of the wild-type and mutant topoisomerase I enzymes, and the drug-induced cleavable complexes are equally sensitive to the NaCl concentration. CPT and IND likely recognize identical structural elements of the topoisomerase I-DNA covalent complex; however, differences do exist in terms of sequence-specificity of topoisomerase I-mediated DNA cleavage. For the first time, a molecular model showing that CPT and IND share common steric and electronic features is proposed. The model helps to identify a specific pharmacophore for topoisomerase I inhibitors.  相似文献   
77.
78.
The effects of a synthetic pyrethroid insecticide, cypermethrin, administered as a formulation Ripcord 25EC (emulsified concentrate), to adult beetles of a stored grain pest, Tribolium castaneum, have been studied, with an objective to ascertain its toxicity on enzymes such as carbohydrases, phosphatases, dehydrogenases, aminotransferases, and concentration of various biochemical components such as monosaccharides, glycogen, cholesterol, nucleic acids, urea, total lipids, and total proteins. Almost all the enzymes and biochemical components were sensitive to sublethal doses of Ripcord 25 EC and these effects were found to be dependent on the duration of treatment. All carbohydrate metabolizing enzymes (amylase, invertase, lactase, maltase, lactate dehydrogenase) were elevated, except for trehalase, which was also elevated up to day 3 but returned to normal levels subsequently. Phosphatases (alkaline as well as acidic) were increased first and decreased thereafter, while isocitrate dehydrogenase decreased throughout the experimental period. Transaminases (aspartate aminotransferase and alanine aminotransferase) showed a decreasing trend. Of the other biochemical components tested, glucose content decreased during the first 3 days but increased subsequently. Fructose content showed an increase, while the glycogen content decreased throughout the study. Total lipid content was not disturbed up to day 3 but increased thereafter. Cholesterol content was depleted by day 7. Total proteins started decreasing from day 3 onwards, while soluble proteins were not affected. DNA, RNA, and urea contents exhibited elevated levels, while uric acid showed a decreasing trend. Sublethal doses of Ripcord, therefore, resulted in extensive enzyme induction, and utilization of carbohydrates, proteins, and lipids, in the given order, perhaps to produce extra energy to combat insecticidal stress. Arch. Insect Biochem. Physiol. 39:144–154, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
79.
Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (CAL-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-h post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.  相似文献   
80.
Isorhamnetin, a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L., is well known for its anti-inflammatory, anti-oxidative, anti-adipogenic, anti-proliferative, and anti-tumor activities. However, the role of isorhamnetin in cardiac hypertrophy has not been reported. The aims of the present study were to find whether isorhamnetin could alleviate cardiac hypertrophy and to define the underlying molecular mechanisms. Here, we investigated the effects of isorhamnetin (100 mg/kg/day) on cardiac hypertrophy induced by aortic banding in mice. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Our data demonstrated that isorhamnetin could inhibit cardiac hypertrophy and fibrosis 8 weeks after aortic banding. The results further revealed that the effect of isorhamnetin on cardiac hypertrophy was mediated by blocking the activation of phosphatidylinositol 3-kinase–AKT signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes confirmed that isorhamnetin could attenuate cardiomyocyte hypertrophy induced by angiotensin II, which was associated with phosphatidylinositol 3-kinase–AKT signaling pathway. In conclusion, these data indicate for the first time that isorhamnetin has protective potential for targeting cardiac hypertrophy by blocking the phosphatidylinositol 3-kinase–AKT signaling pathway. Thus, our study suggests that isorhamnetin may represent a potential therapeutic strategy for the treatment of cardiac hypertrophy and heart failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号