排序方式: 共有88条查询结果,搜索用时 15 毫秒
21.
Maudry Laurent-Rolle Elena F. Boer Kirk J. Lubick James B. Wolfinbarger Aaron B. Carmody Barry Rockx Wenjun Liu Joseph Ashour W. Lesley Shupert Michael R. Holbrook Alan D. Barrett Peter W. Mason Marshall E. Bloom Adolfo García-Sastre Alexander A. Khromykh Sonja M. Best 《Journal of virology》2010,84(7):3503-3515
22.
Caitlin A. O’Brien Jody Hobson-Peters Alice Wei Yee Yam Agathe M. G. Colmant Breeanna J. McLean Natalie A. Prow Daniel Watterson Sonja Hall-Mendelin David Warrilow Mah-Lee Ng Alexander A. Khromykh Roy A. Hall 《PLoS neglected tropical diseases》2015,9(3)
Mosquito-borne viruses encompass a range of virus families, comprising a number of significant human pathogens (e.g., dengue viruses, West Nile virus, Chikungunya virus). Virulent strains of these viruses are continually evolving and expanding their geographic range, thus rapid and sensitive screening assays are required to detect emerging viruses and monitor their prevalence and spread in mosquito populations. Double-stranded RNA (dsRNA) is produced during the replication of many of these viruses as either an intermediate in RNA replication (e.g., flaviviruses, togaviruses) or the double-stranded RNA genome (e.g., reoviruses). Detection and discovery of novel viruses from field and clinical samples usually relies on recognition of antigens or nucleotide sequences conserved within a virus genus or family. However, due to the wide antigenic and genetic variation within and between viral families, many novel or divergent species can be overlooked by these approaches. We have developed two monoclonal antibodies (mAbs) which show co-localised staining with proteins involved in viral RNA replication in immunofluorescence assay (IFA), suggesting specific reactivity to viral dsRNA. By assessing binding against a panel of synthetic dsRNA molecules, we have shown that these mAbs recognise dsRNA greater than 30 base pairs in length in a sequence-independent manner. IFA and enzyme-linked immunosorbent assay (ELISA) were employed to demonstrate detection of a panel of RNA viruses from several families, in a range of cell types. These mAbs, termed monoclonal antibodies to viral RNA intermediates in cells (MAVRIC), have now been incorporated into a high-throughput, economical ELISA-based screening system for the detection and discovery of viruses from mosquito populations. Our results have demonstrated that this simple system enables the efficient detection and isolation of a range of known and novel viruses in cells inoculated with field-caught mosquito samples, and represents a rapid, sequence-independent, and cost-effective approach to virus discovery. 相似文献
23.
Complex membrane structures induced by West Nile virus (WNV), an enveloped RNA virus, are required for efficient viral replication. How these membranes are induced and how they facilitate the viral life cycle are unknown. We show that WNV modulates host cell cholesterol homeostasis by upregulating cholesterol biosynthesis and redistributing cholesterol to viral replication membranes. Manipulating cholesterol levels and altering concentrations of cellular geranylgeranylated proteins had a deleterious effect on virus replication. Depletion of the key cholesterol-synthesizing enzyme 3-hydroxy-methyglutaryl-CoA reductase drastically hampered virus replication. Significantly, virus-induced redistribution of cellular cholesterol downregulated the interferon-stimulated Jak-STAT antiviral signaling response to infection. This defect could be partially restored by exogenous addition of cholesterol, which increased the ability of infected cells to respond to interferon. We propose that, by manipulating cellular cholesterol, WNV utilizes the cellular response to cholesterol deficiency and dependence of antiviral signaling pathways on cholesterol-rich microdomains to facilitate viral replication and survival. 相似文献
24.
Sensitivity of Drosophila embryos to lethal effect of UV rays was studied in mutants rad202G1 and mei-9a (a homologue of the gene for xeroderma pigmentosum) that are deficient in excision repair, the mutant mei-41D5 (a homologue of the gene for AT) with distorted check-point function in the cell cycle, and wild-type line Oregon R. The mortality of embryos, which were exposed to radiation within the 0.5-16-h interval of embryonic life, served as a criterion of sensitivity. During this interval of embryogenesis, the multicellular system of Drosophila embryo sequentially consecutively passes through a set of well studied cell cycle modifications. It was of interest to compare UV sensitivity at these stages recorded at the organism level. The induced embryonic lethality was tested by means of determining the dose-effect relationship followed by an estimation of corresponding values of the LD50 dose characterizing the pattern of age-associated changes of the character. The obtained data were analyzed in relation to the specificity of the mutagenic effect of UV irradiation, the features of Drosophila development, and repair deficiency of each studied mutant. The interval of the pronounced effect of UV irradiation on embryo viability was shown to be limited to 13 h from the beginning of embryonic life. During this interval, the UV sensitivity of embryogenesis in mutant lines is much higher than in the line of normal genotype. Moreover, at the level of LD50 doses that individually characterize each line, this sensitivity did not exhibit a relation to the mitotic status of cells, in contrast with the effects of rarely ionizing radiation. UV-inducible embryo lethalities that are caused by the mortality of dividing and nondividing cells are whether equal (line Oregon R and mutants rad202G1 and mei-41D5) or even extremum in the case of damage of amitotically growing cells (the mei-9a mutant). Possible mechanisms of these manifestations are discussed. 相似文献
25.
Wylie FG Lock JG Jamriska L Khromykh T Brown DL Stow JL 《Traffic (Copenhagen, Denmark)》2003,4(3):175-189
Galpha interacting protein (GAIP) is a regulator of G protein signaling protein that associates dynamically with vesicles and has been implicated in membrane trafficking, although its specific role is not yet known. Using an in vitro budding assay, we show that GAIP is recruited to a specific population of trans -Golgi network-derived vesicles and that these are distinct from coatomer or clathrin-coated vesicles. A truncation mutant (NT-GAIP) encoding only the N-terminal half of GAIP is recruited to trans -Golgi network membranes during the formation of vesicle carriers. Overexpression of NT-GAIP induces the formation of long, coated tubules, which are stabilized by microtubules. Results from the budding assay and from imaging in live cells show that these tubules remain attached to the Golgi stack rather than being released as carrier vesicles. NT-GAIP expression blocks membrane budding and results in the accumulation of tubular carrier intermediates. NT-GAIP-decorated tubules are competent to load vesicular stomatitis virus protein G-green fluorescent protein as post-Golgi, exocytic cargo and in cells expressing NT-GAIP there is reduced surface delivery of vesicular stomatitis virus protein G-green fluorescent protein. We conclude that GAIP functions as an essential part of the membrane budding machinery for a subset of post-Golgi exocytic carriers derived from the trans -Golgi network. 相似文献
26.
Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein 下载免费PDF全文
A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS2B-3-4A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements. 相似文献
27.
Stephanie L. Moon John R. Anderson Yutaro Kumagai Carol J. Wilusz Shizuo Akira Alexander A. Khromykh Jeffrey Wilusz 《RNA (New York, N.Y.)》2012,18(11):2029-2040
All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3′ untranslated region during infection due to stalling of the cellular 5′-to-3′ exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation. 相似文献
28.
Significance in replication of the terminal nucleotides of the flavivirus genome 总被引:7,自引:0,他引:7 下载免费PDF全文
Khromykh AA Kondratieva N Sgro JY Palmenberg A Westaway EG 《Journal of virology》2003,77(19):10623-10629
Point mutations that resulted in a substitution of the conserved 3'-penultimate cytidine in genomic RNA or the RNA negative strand of the self-amplifying replicon of the Flavivirus Kunjin virus completely blocked in vivo replication. Similarly, substitutions of the conserved 3'-terminal uridine in the RNA negative or positive strand completely blocked replication or caused much-reduced replication, respectively. The same preference for cytidine in the 3'-terminal dinucleotide was noted in reports of the in vitro activity of the RNA-dependent RNA polymerase (RdRp) for the other genera of Flaviviridae that also employ a double-stranded RNA (dsRNA) template to initiate asymmetric semiconservative RNA positive-strand synthesis. The Kunjin virus replicon results were interpreted in the context of a proposed model for initiation of RNA synthesis based on the solved crystal structure of the RdRp of phi6 bacteriophage, which also replicates efficiently using a dsRNA template with conserved 3'-penultimate cytidines and a 3'-terminal pyrimidine. A previously untested substitution of the conserved pentanucleotide at the top of the 3'-terminal stem-loop of all Flavivirus species also blocked detectable in vivo replication of the Kunjin virus replicon RNA. 相似文献
29.
30.
Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication 下载免费PDF全文
A number of full-length cDNA clones of Kunjin virus (KUN) were previously prepared; it was shown that two of them, pAKUN and FLSDX, differed in specific infectivities of corresponding in vitro transcribed RNAs by approximately 100,000-fold (A. A. Khromykh et al., J. Virol. 72:7270-7279, 1998). In this study, we analyzed a possible genetic determinant(s) of the observed differences in infectivity initially by sequencing the entire cDNAs of both clones and comparing them with the published sequence of the parental KUN strain MRM61C. We found six common amino acid residues in both cDNA clones that were different from those in the published MRM61C sequence but were similar to those in the published sequences of other flaviviruses from the same subgroup. pAKUN clone had four additional codon changes, i.e., Ile59 to Asn and Arg175 to Lys in NS2A and Tyr518 to His and Ser557 to Pro in NS3. Three of these substitutions except the previously shown marker mutation, Arg175 to Lys in NS2A, reverted to the wild-type sequence in the virus eventually recovered from pAKUN RNA-transfected BHK cells, demonstrating the functional importance of these residues in viral replication and/or viral assembly. Exchange of corresponding DNA fragments between pAKUN and FLSDX clones and site-directed mutagenesis revealed that the Tyr518-to-His mutation in NS3 was responsible for an approximately 5-fold decrease in specific infectivity of transcribed RNA, while the Ile59-to-Asn mutation in NS2A completely blocked virus production. Correction of the Asn59 in pAKUN NS2A to the wild-type Ile residue resulted in complete restoration of RNA infectivity. Replication of KUN replicon RNA with an Ile59-to-Asn substitution in NS2A and with a Ser557-to-Pro substitution in NS3 was not affected, while the Tyr518-to-His substitution in NS3 led to severe inhibition of RNA replication. The impaired function of the mutated NS2A in production of infectious virus was complemented in trans by the helper wild-type NS2A produced from the KUN replicon RNA. However, replicon RNA with mutated NS2A could not be packaged in trans by the KUN structural proteins. The data demonstrated essential roles for the KUN nonstructural protein NS2A in virus assembly and for NS3 in RNA replication and identified specific single-amino-acid residues involved in these functions. 相似文献