首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   23篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   19篇
  2014年   20篇
  2013年   28篇
  2012年   36篇
  2011年   38篇
  2010年   17篇
  2009年   14篇
  2008年   21篇
  2007年   22篇
  2006年   18篇
  2005年   12篇
  2004年   11篇
  2003年   21篇
  2002年   14篇
  2001年   16篇
  2000年   17篇
  1999年   16篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1995年   9篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1985年   7篇
  1984年   4篇
  1982年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   4篇
  1970年   6篇
  1969年   2篇
  1965年   2篇
  1952年   2篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
451.
N-Glycans from major glycoproteins of pigeon egg white (ovotransferrin, ovomucoid, and ovalbumins) were enzymatically released and were reductively aminated with 2-aminopyridine, separated, and structurally characterized by mass spectrometry and a three-dimensional mapping technique using three different columns of high performance liquid chromatography (HPLC) (Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., and Tomiya, N. (1995) Anal. Biochem. 226, 139-146). Twenty-five major N-glycan structures, all of them hitherto unknown, were identified as pyridylamino derivatives. Of these, 13 were neutral, 10 were monosialyl, and 2 were disialyl oligosaccharides. All N-glycans contain from one to four Galalpha(1,4)Galbeta(1,4) sequences at the nonreducing terminal positions and are devoid of fucose residues. N-Acetylneuraminic acids were alpha(2,6)-linked only to beta-galactose. The HPLC profiles of the N-glycans from four different glycoproteins were qualitatively very similar to each other, but not identical in the peak distributions. Monosialyl glycans were most abundant in all four glycoproteins, followed by neutral glycans. Disialyl glycans were lowest in ovotransferrin, and highest in ovomucoid. Triantennary structures with bisecting GlcNAc were predominant in ovotransferrin, and tetra-antennary (with and without bisecting GlcNAc-containing) structures were predominant in other glycoproteins. Penta-antennary structures (with a sialic acid and without bisecting GlcNAc residue) were also found in small quantities in all four glycoproteins. In contrast to the chicken egg white counterparts, which contain mostly high mannose and hybrid types, all N-glycan structures in the major pigeon egg white glycoproteins are complex type.  相似文献   
452.
Apolipoprotein (apo) E and apoC-III concentrations in VLDL and LDL are associated with coronary heart disease. We studied the relationship between apoE and apoC-III and the abnormal concentrations and distribution of apoB lipoproteins in 10 hypercholesterolemic and 13 hypertriglyceridemic patients compared with 12 normolipidemic subjects (mean age, 45 years). Sixteen distinct types of apoB lipoprotein particles were separated by first using anti-apoE and anti-apoC-III immunoaffinity chromatography in sequence and then ultracentrifugation [light VLDL, dense VLDL, IDL, and LDL, with apoE with or without apoC-III (E(+)C-III(+), E(+)C-III(-)) or without apoE with or without apoC-III (E(-)C-III(+), E(-)C-III(-))]. The concentrations of VLDL particles with apoC-III (E(+)C-III(+), E(-)C-III(+)) were increased in the hypertriglyceridemic group compared with the hypercholesterolemic and normolipidemic groups. These particles were the most triglyceride rich of the particle types, and their triglyceride content was twice as high in hypertriglyceridemics compared with the other two groups. Hypertriglyceridemics had a similar concentration of total E(-)C-III(-) particles compared with normolipidemics, but the E(-)C-III(-) particles were distributed more to VLDL and IDL than to LDL. Hypercholesterolemics, in contrast, were distinguished from the normolipidemic group by 2-fold higher concentrations of apoB lipoproteins without apoE or apoC-III (E(-)C-III(-)), mainly LDL, which had high cholesterol content. Nonetheless, both normolipidemics and hypercholesterolemics had apoC-III-containing VLDL, which comprised 68% and 43% of their total VLDL particles. E(+)C-III(-) particles were a minor type, comprising <10% of particles in all lipoproteins and patient groups. Therefore, VLDL particles with apoC-III may play a central role in identifying the high risk of coronary heart disease in hypertriglyceridemia, but their substantial prevalence in normolipidemics may be of clinical significance as well.  相似文献   
453.
Peptide:N-glycanase (PNGase; EC 3.5.1.52) activity was detected in dormant rice seeds (Oryza sativa) and the imbibed rice grains. Time-course studies revealed that the enzyme activity remained almost constant until about 30 h after imbibition in both of endosperm- and embryo tissue-containing areas, and started to increase only in growing germ part, reached a peak at about 3-day stage, followed by a gradual decrease concomitant with a sharp increase in the coleoptile. The specific activity increased about 6-fold at about 3-day stage. PNGase was purified to electrophoretic homogeneity from the extracts of germinated rice seeds at 24 h, and the apparent molecular weight of the purified enzyme, estimated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), was about 80,000. The purified enzyme was designated PNGase Os to denote its origin. The N-terminal sequence of the 10 residues was determined to be SYNVASVAGL. The purified PNGase Os in SDS-PAGE appeared as a rather broad band, consistent with the presence of multiple glycoforms as indicated by chromatographic behavior on a Sephadex G-75 column. PNGase expressed in coleoptile under anoxia condition was also purified, and both of the purified enzymes were found to exhibit very similar, if not identical, electrophoretic mobility in SDS-PAGE. PNGase Os exhibited a broad pH-activity profile with an optimum of 4-5 and, interestingly, was significantly inactivated by K(+) and Na(+) at near the physiological concentration, 100 mM. These results are discussed in relation to other work.  相似文献   
454.
455.
Fibroblast growth factors (FGFs) and their receptors are expressed in a variety of mammalian tissues, playing a role in development and cell proliferation. While analyzing human sperm motility, we found that sperm treated with endo-β-galactosidase (EBG), which specifically hydrolyzes poly-N-acetyllactosamine type glycans (polyLacs), enhanced motility. Mass spectrometry analysis revealed that sperm-associated polyLacs are heavily fucosylated, consistent with Lewis Y antigen. Immunohistochemistry of epididymis using an anti-Lewis Y antibody before and after EBG treatment suggested that polyLacs carrying the Lewis Y epitope are synthesized in epididymal epithelia and secreted to seminal fluid. EBG-treated sperm elevated cAMP levels and calcium influx, indicating activation of fibroblast growth factor signaling. Seminal fluid polyLacs bound to FGFs in vitro, and impaired FGF-mediated signaling in HEK293T cells.  相似文献   
456.
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella‐containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane‐bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP‐bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63‐containing late endosomes. Nischarin is recruited to the SCV in a Rab14‐dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners—Rac1, Rab14 and Rab9 GTPases—reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.  相似文献   
457.
The present research aims to optimize the sphingomyelinase (SMase) activity produced by Lactobacillus rhamnosus FTDC 8313 using divalent metal ions via response surface methodology and to further study the effects of the divalent metal ions on SMase activity using molecular modeling approach. This study also aimed to assess the possibility of increasing ceramide levels in vitro on cultured keratinocytes upon treatment with the extracellular extract of the optimized L. rhamnosus FTDC 8313. Using a central composite design, an optimum point of SMase activity (6.54 mU ml?1) was produced from a combination of 0.65% (w/v) MnSO4 and 0.82% (w/v) MgSO4. 3D response surface indicated that the altered availability of the two ions (Mn2+ and Mg2+) reduced their effects on SMase activity. In addition, the treatment of the HaCaT cells with optimized extracellular extract of L. rhamnosus FTDC8313 significantly increased (P < 0.05) the conversion of sphingomyelin to ceramide as compared to the control. Molecular docking demonstrated that the addition of Mn2+ and Mg2+ into the active site of SMase improved the binding affinity between the SMase and sphingomyelin based on its free energy of binding as well as the interaction distances between the important catalytic residues Glu53 and His296.  相似文献   
458.
Thermus thermophilus HB27 is an extremely thermophilic eubacteria with a high frequency of natural competence. This organism is therefore often used as a thermophilic model to investigate the molecular basis of type IV pili–mediated functions, such as the uptake of free DNA, adhesion, twitching motility, and biofilm formation, in hot environments. In this study, the phosphoproteome of T. thermophilus HB27 was analyzed via a shotgun approach and high-accuracy mass spectrometry. Ninety-three unique phosphopeptides, including 67 in vivo phosphorylated sites on 53 phosphoproteins, were identified. The distribution of Ser/Thr/Tyr phosphorylation sites was 57%/36%/7%. The phosphoproteins were mostly involved in central metabolic pathways and protein/cell envelope biosynthesis. According to this analysis, the ATPase motor PilF, a type IV pili–related component, was first found to be phosphorylated on Thr-368 and Ser-372. Through the point mutation of PilF, mimic phosphorylated mutants T368D and S372E resulted in nonpiliated and nontwitching phenotypes, whereas nonphosphorylated mutants T368V and S372A displayed piliation and twitching motility. In addition, mimic phosphorylated mutants showed elevated biofilm-forming abilities with a higher initial attachment rate, caused by increasing exopolysaccharide production. In summary, the phosphorylation of PilF might regulate the pili and biofilm formation associated with exopolysaccharide production.Thermus thermophilus HB27 is a Gram-negative, rod-shaped, and extremely thermophilic eubacterium isolated from a geothermal area (1). This organism grows at temperatures up to 85 °C and has an optimal growth temperature of 70 °C. The thermostable enzymes obtained from members of the genus Thermus are of considerable interest because of their potential in research, biotechnological, and industrial applications (2, 3). In addition, T. thermophilus HB27 is a suitable laboratory model for genetic manipulation, as it is easily cultured under laboratory conditions and has a natural transformation system that is much more efficient than those of other Thermus spp. (4). Intriguingly, thermophiles are also found in biofilms, enclosed within a matrix consisting of extracellular polymeric substances, in various natural and artificial thermal environments (5, 6). Bacteria form biofilms in order to adapt and survive in harsh environments (7, 8). Over the past few decades, biofilm formation has been a major focus of microbial research and, as such, has been studied in relationship to bacterial pathogenesis, immunology, biofouling, microbial technology, and industrial applications (7, 912).Members of the genus Thermus, like many other thermophiles, have evolved two main mechanisms for thermoadaption. One is biofilm formation, which confers protection against environmental stresses such as high temperature and the presence of antibiotics (8). In previous studies, a novel exopolysaccharide, TA-1, was isolated from a T. aquaticus YT-1 biofilm, and both its primary structure and its immunological activity were determined (13). In addition, we showed that the overexpression of uridine diphosphate (UDP)-galactose-4′-epimerase (GalE), which catalyzes the reversible interconversion of UDP-galactose and UDP-glucose, in T. thermophilus HB27 increases biofilm production because of the enzyme''s involvement in an important step of exopolysaccharide (EPS)1 biosynthesis (14). The other mechanism that enables Thermus to thrive in extreme habitats is natural transformation (i.e. the ability to take up free DNA). In hot environments, natural transformation allows the horizontal exchange of genetic information between extremophiles, including of genes that promote thermoadaptation (1517). Recent studies showed that the type IV pili (T4P) on the cell surface of T. thermophilus HB27 not only are required for natural transformation (18, 19), but also mediate adhesion and twitching motility (20). Also, together with the degree of EPS production, the presence of T4P on the bacterial cell surface contributes to the regulation of biofilm formation (21). However, despite extensive research on the physiological, biochemical, and genetic traits of thermophiles, the mechanisms underlying these functions and their role in thermal adaptation have not been fully elucidated (16, 2224).Advances in the field of phosphoproteomics have come from high-resolution mass spectrometry and prokaryotic genome sequencing, which have confirmed the phosphorylation of many bacterial proteins on serine/threonine and tyrosine residues (25, 26). In surveys of phosphorylation-related functions, bacterial serine, threonine, and tyrosine phosphoproteins have been shown to regulate many physiological and adaptation processes, such as central carbon catabolism, the heat shock response, osmolarity, starvation, EPS synthesis, virulence, and sporulation (2527). These observations have been followed by more detailed, species-specific phosphoproteomics investigations, including in Bacillus subtilis (28), Escherichia coli (29), Lactococcus lactis (30), Halobacterium salinarum (31), Klebsiella pneumonia (32), Pseudomonas spp. (33), Rhodopseudomonas palustris (34), and T. thermophilus HB8 (35). In this study, the role played by the global phosphorylation network of the thermophile T. thermophilus HB27 in the physiological processes that mediate the stress responses and thermotolerance of this bacterium was examined. Specifically, we used strong cation exchange (SCX) chromatography and titanium dioxide (TiO2) (2830) enrichment to characterize the phosphoproteomic map of T. thermophilus HB27. Genetic manipulation of this strain indicated that phosphorylation of the PilF protein, which contains an ATP-binding motif (TTC1622/pilF) and drives T4P formation, is involved in both EPS production and piliation, thereby influencing the biofilm formation during thermophilic adaptation.  相似文献   
459.
460.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号