首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
  99篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   9篇
  2002年   4篇
  2001年   14篇
  2000年   5篇
  1999年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有99条查询结果,搜索用时 0 毫秒
81.
The genes encoding of DNA ligases from the thermophilic archaeon Pyrococcus abyssi (PabDNA ligase) and Methanobacterium thermoautotrophicum (MthDNA ligase) were cloned and expressed in Escherichia coli. The activity of purified enzymes was studied by ligation of two oligonucleotides, one of which had preformed hairpin structure. In the used system the maximal output of reaction products for both DNA ligases was observed near 70 degrees C that is explained by substrate thermostability. At stoichiometric ratio of enzymes and substrate the output of a product reaches of plateau at 70-75% of theoretical ones. Investigated DNA ligases showed different thermostability. The half-time life of PabDNA ligase was about 60 min at 90 degrees C. MthDNA ligase was completely inactivated at this temperature during 10 min. Recombinant DNA ligases from P. abyssi and M. thermoautotrophicum possessed high stability during a storage at 4 degrees C.  相似文献   
82.
The genus Aconitum (consists more than 250 species) is one of the most important clades of highly valued medicinal plants. Aconitum species are very essential in the traditional device of medication and feature excessive business demand in the herbal marketplace. Some of biologically energetic compounds, e.g., aconitine, indaconitine, pseudoacontine, and so on, had been recognized, and new formulations primarily based on those compounds are being produced as rapid rate. This has led to extensive and rather unregulated exploitation of the species in the wild making the genus a threatened group. Conventional breeding and propagation methods have contributed significantly, but these could not meet up with the ever increasing demands of herbal drug industry globally. Biotechnological interventions, therefore, emerge as an alternative approach in terms of higher production and conservation as well. In recent years, several reports have been published on in vitro propagation of various important Aconitum species. However, advanced biotechnological approaches, such as synthetic seed production and hairy root cultures, are still lacking with only a few reports available. The current review presents an updated overview and critical assessment of secondary data concerning the past and recent biotechnological approaches and interventions in genus Aconitum. This review also attempts to provide a detailed account of work explored so far in micropropagation and emphasizes over the areas not attempted yet, which will act as a baseline data as well as valuable information for different stakeholders and researchers working on various aspects of Aconitum biotechnology.  相似文献   
83.
84.
85.
Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs). Among the 17 members of the PARP family, PARP-1 and PARP-2 are described as enzymes whose catalytic activity is stimulated by some types of DNA damages.  相似文献   
86.
The dependence of the modification efficiency of DNA polymerases and DNA template on the nature of photoactivatable group and the length of the linker that joins the group with the heterocyclic base of the primer 3'-terminal nucleotide was studied. The primers that contained the photoreactive groups at their 3'-termini were obtained using the rat DNA polymerase beta or the DNA polymerase from Thermus thermophilus in the presence of one of the dTTP analogues carrying the photoreactive group in position 5 of thymidine residue. After irradiating the reaction mixture with UV light and separating the modification products, the level of covalent binding of the [5'-32P]primer to DNA polymerases and template was determined. The primers containing 4-azido-2,5-difluoro-3-chloropyridyl group were shown to be the most effective in the modification of DNA polymerases.  相似文献   
87.
A binary system of photoaffinity reagents for selective affinity labeling of DNA polymerases has been developed. The photoreactive probe was formed in nuclear extract, using an end-labeled oligonucleotide containing a synthetic abasic site. This site was incised by apurinic/apyrimidinic endonuclease and then dNMPs carrying a photoreactive adduct were added to the 3(') hydroxyl using base-substituted arylazido derivatives of dUTP or dCTP. This results in the synthesis of photoreactive base excision repair (BER) intermediates. The photoreactive group was then activated, either directly (UV light exposure 320nm) or in the presence of the sensitizer of dTTP analog containing a pyrene group (Pyr-dUTP) under UV light 365nm. DNA polymerase beta was the main target crosslinked by photoreactive BER intermediates in this nuclear extract. In contrast, several proteins were labeled under the conditions of direct activation of arylazido group.  相似文献   
88.
To introduce photoreactive dNMP residues to the 3"-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-{N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-2"-deoxyuridine 5"-triphosphates, were used as substrates in the DNA polymerase -catalyzed reaction. The resulting nick, containing a modified base at the 3"-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at a predetermined position of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase and human replication protein A (hRPA) were carried out. It was shown that DNA polymerase and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein–DNA interaction.  相似文献   
89.
90.
Eukaryotic flap-endonuclease (FEN-1) is 42-kD single-subunit structure-specific nuclease that cleaves 5"-flap strands of the branched DNA structure and possesses 5"-exonuclease activity. FEN-1 participates in DNA replication, repair, and recombination. The interaction of FEN-1 with DNA structures generated during replication and repair was studied using two types of photoreactive oligonucleotides. Oligonucleotides bearing a photoreactive arylazido group at the 3"-end of the primer were synthesized in situ by the action of DNA polymerase using base-substituted photoreactive dUTP analogs as the substrates. The photoreactive group was also bound to the 5"-end phosphate group of the oligonucleotide by chemical synthesis. Interaction of FEN-1 with both 5"- and 3"-ends of the nick or with primer–template systems containing 5"- or 3"-protruding DNA strands was shown. Formation of a structure with the 5"-flap containing the photoreactive group results in decrease of the level of protein labeling caused by cleavage of the photoreactive group due to FEN-1 endonuclease activity. Photoaffinity labeling of proteins of mouse fibroblast cell extract was performed using the radioactively labeled DNA duplex with the photoreactive group at the 3"-end and the apurine/apyrimidine site at the 5"-end of the nick. This structure is a photoreactive analog of an intermediate formed during DNA repair and was generated by the action of cell enzymes from the initial DNA duplex containing the 3-hydroxy-2-hydroxymethyltetrahydrofurane residue. FEN-1 is shown to be one of the photolabeled proteins; this indicates possible participation of this enzyme in base excision repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号