首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4002篇
  免费   290篇
  国内免费   4篇
  2023年   21篇
  2022年   42篇
  2021年   74篇
  2020年   49篇
  2019年   70篇
  2018年   105篇
  2017年   84篇
  2016年   157篇
  2015年   234篇
  2014年   261篇
  2013年   259篇
  2012年   369篇
  2011年   349篇
  2010年   228篇
  2009年   197篇
  2008年   266篇
  2007年   236篇
  2006年   239篇
  2005年   204篇
  2004年   209篇
  2003年   174篇
  2002年   165篇
  2001年   33篇
  2000年   33篇
  1999年   32篇
  1998年   24篇
  1997年   23篇
  1996年   12篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   12篇
  1991年   10篇
  1990年   11篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   9篇
  1978年   7篇
  1977年   3篇
  1976年   5篇
  1974年   3篇
  1973年   4篇
  1971年   2篇
排序方式: 共有4296条查询结果,搜索用时 31 毫秒
11.
12.
Summary Taxusbrevifolia is the source of paclitaxel (Taxol®), an anticancer drug. A method for regeneration ofTaxus brevifolia from immature zygotic embryos via somatic embryogenesis is described. Embryogenic callus tissues were obtained by culturing immature zygotic embryos on Lloyd and McCown medium (MCM) supplemented with 160 M 2,4-dichlorophenoxyacetic acid (2,4-D) + 5 M benzylaminopurine (BA) + 5 M naphthaleneacetic acid (NAA) for 4 weeks. Putative embryoids were obtained following transfer of cultures to MCM medium supplemented with 4 M BA + 5 M kinetin + 1 M NAA for 6 to 8 weeks. Conversion of embryos was obtained on MCM medium supplemented with 40 M abscisic acid (ABA) + 1% activated charcoal. Development of bipolar structures with recognizable shoot and root apices was observed in somatic embryos. Five percent of somatic embryos were regenerated into plantlets on half-strength growth regulator-free MCM medium.  相似文献   
13.
A cDNA encoding a new phytocystatin isotype named BCPI-1 was isolated from a cDNA library of Chinese cabbage flower buds. The BCPI-1 clone encodes 199 amino acids resulting in a protein much larger than other known phytocystatins. BCPI-1 has an unusually long C-terminus. A BCPI-1 fusion protein expressed in Escherichia coli strongly inhibits the enzymatic activity of papain, a cysteine proteinase. Genomic Southern blot analysis revealed that the BCPI gene is a member of a small multi-gene family in Chinese cabbage. Northern blot analysis showed that it is differentially expressed in the flower bud, leaf and root.  相似文献   
14.
The polymerase chain reaction (PCR) is an attractive technique for many genome mapping and characterization projects. One PCR approach which has been evaluated involves the use of randomly amplified polymorphic DNA (RAPD). An alternative to RAPDs is the sequence-tagged-site (STS) approach, whereby PCR primers are designed from mapped low-copy-number sequences. In this study, we sequenced and designed primers from 22 wheat RFLP clones in addition to testing 15 primer sets that had been previously used to amplify DNA sequences in the barley genome. Our results indicated that most of the primers amplified sequences that mapped to the expected chromosomes in wheat. Additionally, 9 of 16 primer sets tested revealed polymorphisms among 20 hexaploid wheat genotypes when PCR products were digested with restriction enzymes. These results suggest that the STS-based PCR analysis will be useful for generation of informative molecular markers in hexaploid wheat.Contribution no. J-2833 of the Montana Agric Exp Stn  相似文献   
15.
Summary For the secretion of human lipocortin-1 (LC-1) in yeast, a expression and secretion vector was constructed by using the promoter and signal sequence of glucoamylase gene (STA1) of Saccharomyces diastaticus. After the cDNA of human LC-1 was ligated with the secretion vector, the resulting hybrid plasmid was transformed into S. diastaticus. When the recombinant S. diastaticus was cultivated in YPD medium, LC-1 was expressed and secreted into the extracellular medium, yielding LC-1 protein at a concentration of 2.5 g/mL.  相似文献   
16.
Soluble starch synthase (SSS) I was purified 361-fold from hand-dissected endosperm tissue of inbred maize (Zea mays, cv. B73) to specific activities ranging between 5 and 9 µmol min−1 mg−1. A key to this purification protocol was the introduction of a size-exclusion chromatography step, a size-based fractionation which provided abundant levels of desalted SSS forms I and II. The native molecular masses calculated for SSS forms I and II were 75.5 kDa and 180 kDa, respectively. SSSI was then further purified by hydrophobic interaction chromatography on Phenyl-Superose and by FPLC on Mono Q. Analysis of column peaks by SDS—PAGE and scanning densitometry revealed that a 76 kDa polypeptide is strongly correlated with SSSI activity. Antibodies were then generated against a 76 kDa polypeptide extracted from starch granules. These antibodies, which were monospecific for the soluble 76 kDa polypeptide, neutralized greater than 90% of SSSI activity, and precipitated the 76 kDa protein. These results establish the 76 kDa protein as an SSSI in the B73 line of inbred maize. An immunologically similar 76 kDa protein also appears to be tightly associated with the starch granule.  相似文献   
17.
18.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
19.
Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides ( 4 a – i , 7 a – g ) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI−H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a – i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a – g in all biological assays. Compounds 7 e – f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 μM and 1.794±0.159 μM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.  相似文献   
20.
Salmonella typhimurium possesses an adaptive response to acid that increases survival during exposure to extremely low pH values. The acid tolerance response (ATR) includes both log-phase and stationary-phase systems. The log-phase ATR appears to require two components for maximum acid tolerance, namely an inducible pH homeostasis system, and a series of acid-shock proteins. We have discovered one of what appears to be a series of inducible exigency pH homeostasis systems that contribute to acid tolerance in extreme acid environments. The low pH-inducible lysine decarboxylase was shown to contribute significantly to pH homeostasis in environments as low as pH 3.0. Under the conditions tested, both lysine decarboxylase and σs-dependent acid-shock proteins were required for acid tolerance but only lysine decarboxylase contributed to pH homeostasis. The cadBA operon encoding lysine decarboxylase and a lysine/cadaverine antiporter were cloned from S. typhimurium and were found to be 79% homologous to the cadBA operon from Escherichia coli . The results suggest that S. typhimurium has a variety of means of fulfilling the pH homeostasis requirement of the ATR in the form of inducible amino acid decarboxylases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号