首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   5篇
  132篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   8篇
  2013年   16篇
  2012年   11篇
  2011年   13篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   11篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1971年   1篇
排序方式: 共有132条查询结果,搜索用时 0 毫秒
71.
Cold exposure is a well-known physiological stimulus that activates the sympathetic nervous system and induces brown adipose tissue (BAT) hyperplasia. The effects of cold exposure or cold acclimatation have been extensively studied in interscapular BAT (IBAT). However, it has been recently shown that brown adipocytes are present in adipose deposits considered as white fat such as periovarian (PO) fat pad. We have investigated the kinetic of brown precursor recruitment in adipose tissues using DNA measurement and specific marker expression. In IBAT, cold exposure induces proliferation of precursor cells and differentiation into preadipocytes characterized by the expression of A2COL6, a marker specific to early steps of the differentiation process. A chronic stimulation of the tissue is necessary to observe the full effect. In PO fat pad, no proliferation can be detected, whereas differentiation of brown preadipocytes and maybe phenotypic conversion of white adipocytes seems to be promoted. In conclusion, these data demonstrated that 1) the same stimulus (cold exposure) does not induce the same response in terms of preadipocyte proliferation and differentiation in periovarian and brown adipose tissues, although both contain brown adipocytes, and 2) preadipocyte recruitment in adipose tissues after cold exposure depends on the predominant type of fat cells. © 1996 Wiley-Liss, Inc.  相似文献   
72.
Bacteroides neonati strain MS4T, is the type strain of Bacteroides neonati sp. nov., a new species within the genus Bacteroides. This strain, whose genome is described here, was isolated from a premature neonate stool sample. B. neonati strain MS4T is an obligate anaerobic Gram-negative bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5.03 Mbp long genome exhibits a G+C content of 43.53% and contains 4,415 protein-coding and 91 RNA genes, including 9 rRNA genes.  相似文献   
73.
74.
We investigated the possible interplay between insulin and glucose signaling pathways in rat pancreatic β-cell with a special focus on the role of glucose in IRS signaling in vivo. Three groups of rats were constituted by combining simultaneous infusion during 48 h either of glucose and/or insulin, or glucose+diazoxide: Hyperglycemic- Hyperinsulinemic (HGHI), euglycemic-Hyperinsulinemic (eGHI), Hyperglycemic-euinsulinemic (HGeI). Control rats were infused with 0,9% NaCl. In HGHI and HGeI rats plasma glucose levels were maintained at 20-22 mmol/l. In eGHI rats, plasma glucose was not different from that of controls, whereas plasma insulin was much higher than in controls. In HGHI rats, IRS-2 mRNA expression, total protein and phosphorylated protein amounts were increased compared to controls. In HGeI rats, only IRS-2 mRNA expression was increased. No change was observed in eGHI rats whatever the parameter considered. In all groups, mRNA concentration of IRS-1 was similar to that of controls. The quantity of total and phosphorylated IRS- 1 protein was dramatically increased in HGHI rats and to a lesser extent in eGHI rats. Neither mRNA nor IRS-1 protein expression were modified in HGeI rats. The data suggest that glucose and insulin play at once a specific and a complementary role in islet IRSs signaling. Especially, glucose stimulates IRS-2 mRNA expression whatever the insulin status and independently of the secretory process. The differential regulation of IRS-1 and IRS-2 expressions is in agreement with their supposed different involvement in the control of β-cell growth and function.  相似文献   
75.
76.
Many tumors are stiffer than their surrounding tissue. This increase in stiffness has been attributed, in part, to a Rho-dependent elevation of myosin II light chain phosphorylation. To characterize this mechanism further, we studied myosin light chain kinase (MLCK), the main enzyme that phosphorylates myosin II light chains. We anticipated that increases in MLCK expression and activity would contribute to the increased stiffness of cancer cells. However, we find that MLCK mRNA and protein levels are substantially less in cancer cells and tissues than in normal cells. Consistent with this observation, cancer cells contract 3D collagen matrices much more slowly than normal cells. Interestingly, inhibiting MLCK or Rho kinase did not affect the 3D gel contractions while blebbistatin partially and cytochalasin D maximally inhibited contractions. Live cell imaging of cells in collagen gels showed that cytochalasin D inhibited filopodia-like projections that formed between cells while a MLCK inhibitor had no effect on these projections. These data suggest that myosin II phosphorylation is dispensable in regulating the mechanical properties of tumors.  相似文献   
77.
Epithelial cell adhesion molecule (EpCAM) is best known as a tumor-associated protein highly expressed in carcinomas. The function of this cell surface protein during embryonic development and its potential role in cancer are still poorly understood. We identified EpCAM in a gain-of-function screen for inducers of abnormal tissue mixing during gastrulation. Elevated EpCAM levels in either the ectoderm or the mesoderm confer "invasive" properties to cells in both populations. We found that this phenotype represents an "overstimulation" of an essential activity of EpCAM in controlling cell movements during embryonic development. Surprisingly, this property is independent of the putative adhesive function of EpCAM, and rather relies on a novel signaling function that operates through down-regulation of PKC activity. We show that inhibition of novel PKCs accounts entirely for the invasive phenotype induced by abnormally high levels of EpCAM as well as for its normal function in regulating cell rearrangement during early development.  相似文献   
78.
Many central pattern generating networks are influenced by synaptic input from modulatory projection neurons. The network response to a projection neuron is sometimes mimicked by bath applying the neuronally-released modulator, despite the absence of network interactions with the projection neuron. One interesting example occurs in the crab stomatogastric ganglion (STG), where bath applying the neuropeptide pyrokinin (PK) elicits a gastric mill rhythm which is similar to that elicited by the projection neuron modulatory commissural neuron 1 (MCN1), despite the absence of PK in MCN1 and the fact that MCN1 is not active during the PK-elicited rhythm. MCN1 terminals have fast and slow synaptic actions on the gastric mill network and are presynaptically inhibited by this network in the STG. These local connections are inactive in the PK-elicited rhythm, and the mechanism underlying this rhythm is unknown. We use mathematical and biophysically-realistic modeling to propose potential mechanisms by which PK can elicit a gastric mill rhythm that is similar to the MCN1-elicited rhythm. We analyze slow-wave network oscillations using simplified mathematical models and, in parallel, develop biophysically-realistic models that account for fast, action potential-driven oscillations and some spatial structure of the network neurons. Our results illustrate how the actions of bath-applied neuromodulators can mimic those of descending projection neurons through mathematically similar but physiologically distinct mechanisms.  相似文献   
79.
GPR91, a 7TM G-Protein-Coupled Receptor, has been recently deorphanized with succinic acid as its endogenous ligand. Current literature indicates that GPR91 plays role in various pathophysiology including renal hypertension, autoimmune disease and retinal angiogenesis. Starting from a small molecule high-throughput screening hit 1 (hGPR91 IC50: 0.8 μM)—originally synthesized in Merck for Bradykinin B1 Receptor (BK1R) program, systematic structure-activity relationship study led us to discover potent and selective hGPR91 antagonists e.g. 2c, 4c, and 5g (IC50: 7-35 nM; >1000 fold selective against hGPR99, a closest related GPCR; >100 fold selective in Drug Matrix screening). This initial work also led to identification of two structurally distinct and orally bio-available lead compounds: 5g (%F: 26) and 7e (IC50: 180 nM; >100 fold selective against hGPR99; %F: 87). A rat pharmacodynamic assay was developed to characterize the antagonists in vivo using succinate induced increase in blood pressure. Using two representative antagonists, 2c and 4c, the GPR91 target engagement was subsequently demonstrated using the designed pharmacodynamic assay.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号