首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2820篇
  免费   236篇
  国内免费   5篇
  3061篇
  2024年   2篇
  2023年   9篇
  2022年   37篇
  2021年   86篇
  2020年   45篇
  2019年   66篇
  2018年   76篇
  2017年   88篇
  2016年   89篇
  2015年   156篇
  2014年   157篇
  2013年   220篇
  2012年   201篇
  2011年   214篇
  2010年   132篇
  2009年   135篇
  2008年   183篇
  2007年   224篇
  2006年   192篇
  2005年   165篇
  2004年   157篇
  2003年   119篇
  2002年   132篇
  2001年   18篇
  2000年   11篇
  1999年   13篇
  1998年   24篇
  1997年   18篇
  1996年   11篇
  1995年   6篇
  1994年   9篇
  1993年   13篇
  1992年   9篇
  1990年   4篇
  1989年   5篇
  1987年   3篇
  1986年   3篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有3061条查询结果,搜索用时 15 毫秒
81.
Nucleotide excision repair (NER) is the principal pathway for counteracting cytotoxic and mutagenic effects of UV irradiation. To provide insight into the in vivo regulation of the DNA damage recognition step of global genome NER (GG-NER), we constructed cell lines expressing fluorescently tagged damaged DNA binding protein 1 (DDB1). DDB1 is a core subunit of a number of cullin 4-RING ubiquitin ligase complexes. UV-activated DDB1-DDB2-CUL4A-ROC1 ubiquitin ligase participates in the initiation of GG-NER and triggers the UV-dependent degradation of its subunit DDB2. We found that DDB1 rapidly accumulates on DNA damage sites. However, its binding to damaged DNA is not static, since DDB1 constantly dissociates from and binds to DNA lesions. DDB2, but not CUL4A, was indispensable for binding of DDB1 to DNA damage sites. The residence time of DDB1 on the damage site is independent of the main damage-recognizing protein of GG-NER, XPC, as well as of UV-induced proteolysis of DDB2. The amount of DDB1 that is temporally immobilized on damaged DNA critically depends on DDB2 levels in the cell. We propose a model in which UV-dependent degradation of DDB2 is important for the release of DDB1 from continuous association to unrepaired DNA and makes DDB1 available for its other DNA damage response functions.  相似文献   
82.
Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter ( R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.  相似文献   
83.
The application of atomic force microscopy (AFM) technique in proteomic research, identification and visualization of individual molecules and molecular complexes within the P450cam containing monooxygenase system was demonstrated. The method distinguishes between the binary protein complexes and appropriate monomeric proteins and, also, between the binary and ternary complexes. The AFM images of the components of a cytochrome P450cam containing monooxygenase system - cytochrome P450cam (P450cam), putidaredoxin (Pd) and putidaredoxin reductase (PdR) - were obtained on a mica support. The molecules of P450cam, Pd and PdR were found to have typical heights of 2.6 +/- 0.3 nm, 2.0 +/- 0.3 and 2.8 +/- 0.3 nm, respectively. The measured heights of the binary Pd/PdR and P450cam/PdR complexes were 4.9 +/- 0.3 nm and 5.1 +/- 0.3 nm, respectively. The binary P450cam/Pd complexes were found to have a typical height of about (3.9 / 5.7 nm) and the ternary PdR/Pd/P450cam complexes, a typical height of about 9.1 +/- 0.3 nm.  相似文献   
84.
Abstract

The first synthesis of O-β-D-ribofuranosyl-(1″-2′)-adenosine-5″-O-phosphate starting from protected 2′-O-β-D-ribofuranosyladenosine has been performed.  相似文献   
85.
We previously reported that fragments of exogenous double-stranded DNA can be internalized by mouse bone marrow cells without any transfection. Our present analysis shows that only 2% of bone marrow cells take up the fragments of extracellular exogenous DNA. Of these, ~ 45% of the cells correspond to CD34 + hematopoietic stem cells. Taking into account that CD34 + stem cells constituted 2.5% of the total cell population in the bone marrow samples analyzed, these data indicate that as much as 40% of CD34 + cells readily internalize fragments of extracellular exogenous DNA. This suggests that internalization of fragmented dsDNA is a general feature of poorly differentiated cells, in particular CD34 + bone marrow cells.  相似文献   
86.
Glomerular epithelial cells (GEC) are aknown site of vascular endothelial growth factor (VEGF) production. Weestablished immortalized rat GEC, which retained the ability to produceVEGF. The isoforms expressed by GEC were defined as VEGF-205, -188, -120, and -164. The electrical resistance of endothelial cells culturedon GEC-conditioned matrix, an indicator of the permeability ofmonolayers to solutes, was significantly increased by the treatment with the neutralizing polyclonal antibodies to VEGF and decreased byVEGF-165. Transfection of endothelial cells with green fluorescence protein-caveolin construct and intravital confocal microscopy showedthat VEGF results in a rapid appearance of transcellular elongatedstructures decorated with caveolin. Transmission electron microscopy ofendothelial cells showed that caveolae undergo rapid internalizationand fusion 30 min after application of VEGF-165. Later (36 h),endothelial cells pretreated with VEGF developed fenestrae and showed adecrease in electrical resistance. Immunoelectron microscopy ofglomeruli confirmed VEGF localization to podocytes and in the basementmembrane. In summary, immortalized GEC retain the ability to synthesizeVEGF. Matrix-deposited and soluble VEGF leads to the enhancement ofcaveolae expression, their fission and fusion, formation of elongatedcaveolin-decorated structures, and eventual formation of fenestrae,both responsible for the increase in endothelial permeability.

  相似文献   
87.

Background  

Sepsis (bloodstream infection) is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions.  相似文献   
88.
V Koshkin  SN Krylov 《PloS one》2012,7(7):e41368
Multidrug resistance driven by ABC membrane transporters is one of the major reasons for treatment failure in human malignancy. Some limited evidence has previously been reported on the cell cycle dependence of ABC transporter expression. However, it has never been demonstrated that the functional activity of these transporters correlates with the cell cycle position. Here, we studied the rate of intrinsic ABC transport in different phases of the cell cycle in cultured MCF-7 breast cancer cells. The rate was characterized in terms of the efflux kinetics from cells loaded with an ABC transporter substrate. As averaging the kinetics over a cell population could lead to errors, we studied kinetics of ABC transport at the single-cell level. We found that the rate of ABC transport in MCF-7 cells could be described by Michaelis-Menten kinetics with two classical parameters, V(max) and K(M). Each of these parameters showed similar unimodal distributions with different positions of maxima for cell subpopulations in the 2c and 4c states. Compared to the 2c cells, the 4c cells exhibited greater V(max) values, indicating a higher activity of transport. They also exhibited a greater V(max)/K(M) ratio, indicating a higher efficiency of transport. Our findings suggest that cell cycle-related modulation of MDR may need to be taken into account when designing chemotherapy regimens which include cytostatic agents.  相似文献   
89.
Arthrobacter simplex AKU 626 was found to synthesize 4-hydroxyisoleucine from acetaldehyde, alpha-ketobutyrate, and L-glutamate in the presence of Escherichia coli harboring the branched chain amino acid transaminase gene (ilvE) from E. coli K12 substrain MG1655. By using resting cells of A. simplex AKU 626 and E. coli BL21(DE3)/pET-15b-ilvE, 3.2 mM 4-hydroxyisoleucine was produced from 250 mM acetaldehyde, 75 mM alpha-ketobutyrate, and 100 mM L-glutamate with a molar yield to alpha-ketobutyrate of 4.3% in 50 mM Tris-HCl buffer (pH 7.5) containing 2 mM MnCl(2) x 4H(2)O at 28 degrees C for 2 h. An aldolase that catalyzes the aldol condensation of acetaldehyde and alpha-ketobutyrate was purified from A. simplex AKU 626. Mn(2+) and pyridoxal 5'-monophosphate were effective in stabilizing the enzyme. The native and subunit molecular masses of the purified aldolase were about 180 and 32 kDa respectively. The N-terminal amino acid sequence of the purified enzyme showed no significant homology to known aldolases.  相似文献   
90.
Structure-function studies of antibody-antigen systems include the identification of amino acid residues in the antigen that interact with an antibody and elucidation of their individual contributions to binding affinity. We used fluorescence correlation spectroscopy (FCS) and alanine-scanning mutagenesis to characterize the interactions of brain natriuretic peptide (BNP) with two monoclonal antibodies. Human BNP is a 32 amino acid residue long cyclic polypeptide with the ring structure confined between cysteines in positions 10 and 26. It is an important cardiovascular hormone and a valuable diagnostic cardiac marker. We compare the binding strength of the N-terminus Alexa488-labeled BNP, native cyclic BNP, BNP alanine-substituted mutants, linear BNP, and its short fragments to determine the individual contributions of amino acid residues included in the continuous antigenic epitopes that are recognized by two different monoclonal antibodies raised toward BNP. Implementation of FCS for these studies offers all of the advantages of solution phase measurements, including high sensitivity, simplicity of manipulation with reagents, and elimination of solid phase interferences or separation steps. Significant differences in the molecular masses of the free and antibody bound BNP results in a substantial ( approximately 2.5-times) increase in the diffusion rates. Determination of the binding constants and inhibition effects by measuring the diffusion rates of the ligand at the single molecule level introduces the ultimate opportunity for researching systems where the fluorescence intensity and/or fluorescence anisotropy do not change upon interaction of the ligand with the protein. Monoclonal antibodies 106.3 and BC203 demonstrate high affinities to BNP and bind two distant epitopes forming robust antibody sandwiches. Both antibodies are used in Abbott diagnostic assays on AxSYM, IMx, and Architect platforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号