首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3078篇
  免费   291篇
  国内免费   6篇
  2023年   23篇
  2022年   45篇
  2021年   77篇
  2020年   29篇
  2019年   39篇
  2018年   61篇
  2017年   47篇
  2016年   68篇
  2015年   149篇
  2014年   135篇
  2013年   201篇
  2012年   267篇
  2011年   248篇
  2010年   136篇
  2009年   114篇
  2008年   171篇
  2007年   153篇
  2006年   167篇
  2005年   119篇
  2004年   110篇
  2003年   101篇
  2002年   103篇
  2001年   89篇
  2000年   76篇
  1999年   62篇
  1998年   22篇
  1997年   24篇
  1996年   31篇
  1995年   31篇
  1994年   22篇
  1993年   12篇
  1992年   38篇
  1991年   20篇
  1990年   38篇
  1989年   35篇
  1988年   30篇
  1987年   19篇
  1986年   22篇
  1985年   30篇
  1984年   14篇
  1983年   17篇
  1982年   16篇
  1980年   17篇
  1979年   25篇
  1978年   10篇
  1977年   10篇
  1975年   14篇
  1973年   10篇
  1970年   10篇
  1969年   12篇
排序方式: 共有3375条查询结果,搜索用时 15 毫秒
911.
Symbiotic bacteria on house fly eggs, Musca domestica L. (Diptera: Muscidae), provide ovipositional cues for conspecific female flies and curtail the growth of fungi that compete with fly larval offspring for resources. Because bacteria are also essential dietary constituents for developing larvae, we tested the hypothesis that egg‐derived bacteria support development of larvae to adults. From house fly eggs, we isolated and identified 12 strains of bacteria, eight and four of which were previously shown to induce and inhibit oviposition, respectively. When larvae were provisioned with a total dose of 106–107 colony‐forming units of bacteria from either the oviposition‐inducing or inhibiting group, or from both groups together, significantly more larvae completed development. Thus, egg‐associated bacteria could be a fail‐safe mechanism that ensures a bacterial food supply for larval offspring, particularly if the resource selected by parent females is poor in bacterial food.  相似文献   
912.
Cellular metabolism is required for cell proliferation. However, the way in which metabolic signals are conveyed to cell cycle decisions is unclear. Cyclic ADP-ribose (cADPR), the NAD+ metabolite, mobilizes calcium from calcium stores in many cells. We found that dinoflagellate cells with higher metabolic rate underwent multiple fission (MF), a division mode in which cells can exceed twice their sizes at G1. A temperature shift-down experiment suggested that MF involves a commitment point at late G1. In fast-growing cells, cADPR level peaked in G1 and increased with increasing concentrations of glucose in the medium. Addition of glycolytic poison iodoacetate inhibited cell growth, reduced cADPR levels as well as the commitment of cell cycles in fast-growing cells. Commitment of MF cell cycles was induced by a cell permeant cADPR agonist, but blocked by a specific antagonist of cADPR-induced Ca2+ release. Our results establish cADPR as a link between cellular metabolism and cell cycle control.  相似文献   
913.
The gut is anatomically positioned to play a critical role in the regulation of metabolic homeostasis, providing negative feedback via nutrient sensing and local hormonal signaling. Gut hormones, such as cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), are released following a meal and act on local receptors to regulate glycemia via a neuronal gut-brain axis. Additionally, jejunal nutrient sensing and leptin action are demonstrated to suppress glucose production, and both are required for the rapid antidiabetic effect of duodenal jejunal bypass surgery. Strategies aimed at targeting local gut hormonal signaling pathways may prove to be efficacious therapeutic options to improve glucose control in diabetes.  相似文献   
914.
915.
A fuel cell was used to enrich a microbial consortium generating electricity, using organic wastewater as the fuel. Within 30 days of enrichment the maximum current of 0.2 mA was generated with a resistance of 1 k. Current generation was coupled to a fall in chemical oxygen demand from over 1,700 mg l–1 down to 50 mg l–1. Denaturing gradient gel electrophoresis showed a different microbial population in the enriched electrode from that in the sludge used as the inoculum. Electron microscopic observation showed a biofilm on the electrode surface and microbial clumps. Nanobacteria-like particles were present on the biofilm surface. Metabolic inhibitors and electron acceptors inhibited the current generation. 16S ribosomal RNA gene analysis showed a diverse bacterial population in the enrichment culture. These findings demonstrate that an electricity-generating microbial consortium can be enriched using a fuel cell and that the electrochemical activity is a form of anaerobic electron transfer.  相似文献   
916.
917.
ROS, RNS, BRIs and ROS-RNS hybrids are produced during drug or chemical metabolism in vivo. These reactive species are instrumental to the culmination of cellular oxidative stress (OS). OS, once turned on, does not spare any vital intracellular macromolecule, such as glutathione, DNA, RNA, proteins, enzymes, lipids and ATP. Since concentration gradients of such components are very delicately balanced for normal cellular functioning, a gross perturbation leads to cell injury and cell death. Abundant evidence now suggests that intracellular antioxidants keep OS in check and maintain homeostasis. Our laboratory has focused on the role of OS in orchestrating various forms of cell death during drug and chemically-induced target organ toxicity and their counteraction by various natural or synthetic antioxidants in in vivo models. Despite complexity of the in vivo models, results show that metabolism of xenobiotics are invariably associated with different degrees of OS and natural antioxidants such as grape seed extract, bitter melon extract (Momordica charantia) and N-acetylcysteine (NAC) which were very effective in counteracting organ toxicities by minimizing events linked to OS (lipid peroxidation and total glutathione), and CAD-mediated DNA fragmentation. Phytoextract exposure rescued cells from toxic assaults, protected genomic integrity, and minimized apoptotic, necrotic and apocrotic (oncotic necrosis) cell deaths. Pre-exposure mode was more effective than post-exposure route. Overall scenario suggests that OS may have been the prime modulator of death and/or survival programs, whereas, antioxidants may have imparted a dual role in either erasing death signals or reviving survival signals, and a combination of antioxidants may be more beneficial than a single entity to influence a number of intracellular events operating simultaneously to neutralize chaotic toxicological consequences.  相似文献   
918.
The molecular basis of the low-pH activation of the helicase encoded by the hepatitis C virus (HCV) was examined using either a full-length NS3 protein/NS4A cofactor complex or truncated NS3 proteins lacking the protease domain, which were isolated from three different viral genotypes. All proteins unwound RNA and DNA best at pH 6.5, which demonstrate that conserved NS3 helicase domain amino acids are responsible for low-pH enzyme activation. DNA unwinding was less sensitive to pH changes than RNA unwinding. Both the turnover rate of ATP hydrolysis and the Km of ATP were similar between pH 6 and 10, but the concentration of nucleic acid needed to stimulate ATP hydrolysis decreased almost 50-fold when the pH was lowered from 7.5 to 6.5. In direct-binding experiments, HCV helicase bound DNA weakly at high pH only in the presence of the non-hydrolyzable ATP analog, ADP(BeF3). These data suggest that a low-pH environment might be required for efficient HCV RNA translation or replication, and support a model in which an acidic residue rotates toward the RNA backbone upon ATP binding repelling nucleic acid from the binding cleft.  相似文献   
919.
Multi-conformation continuum electrostatics (MCCE) was used to analyze various structures of the NS3 RNA helicase from the hepatitis C virus in order to determine the ionization state of amino acid side chains and their pKas. In MCCE analyses of HCV helicase structures that lacked ligands, several active site residues were identified to have perturbed pKas in both the nucleic acid binding site and in the distant ATP-binding site, which regulates helicase movement. In all HCV helicase structures, Glu493 was unusually basic and His369 was abnormally acidic. Both these residues are part of the HCV helicase nucleic acid binding site, and their roles were analyzed by examining the pH profiles of site-directed mutants. Data support the accuracy of MCCE predicted pKa values, and reveal that Glu493 is critical for low pH enzyme activation. Several key residues, which were previously shown to be involved in helicase-catalyzed ATP hydrolysis, were also identified to have perturbed pKas including Lys210 in the Walker-A motif and the DExD/H-box motif residues Asp290 and His293. When DNA was present in the structure, the calculated pKas shifted for both Lys210 and Asp290, demonstrating how DNA binding might lead to electrostatic changes that stimulate ATP hydrolysis.  相似文献   
920.
In most eukaryotes, crossovers are not independently distributed along the length of a chromosome. Instead, they appear to avoid close proximity to one another--a phenomenon known as crossover interference. Previously, for three of the five Arabidopsis chromosomes, we measured the strength of interference and suggested a model wherein some crossovers experience interference while others do not. Here we show, using the same model, that the fraction of interference-insensitive crossovers is significantly smaller on the remaining two chromosomes. Since these two chromosomes bear the Arabidopsis NOR domains, the possibility that these chromosomal regions influence interference is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号