首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   9篇
  222篇
  2023年   2篇
  2022年   3篇
  2021年   13篇
  2020年   7篇
  2019年   2篇
  2018年   9篇
  2017年   10篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   8篇
  2012年   11篇
  2011年   14篇
  2010年   16篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   4篇
  1968年   2篇
  1967年   2篇
  1966年   9篇
  1965年   3篇
  1964年   7篇
  1963年   1篇
  1960年   3篇
  1959年   1篇
  1958年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
51.
In this study, we followed the genomic, lipidomic and metabolomic changes associated with the selection of miltefosine (MIL) resistance in two clinically derived Leishmania donovani strains with different inherent resistance to antimonial drugs (antimony sensitive strain Sb‐S; and antimony resistant Sb‐R). MIL‐R was easily induced in both strains using the promastigote‐stage, but a significant increase in MIL‐R in the intracellular amastigote compared to the corresponding wild‐type did not occur until promastigotes had adapted to 12.2 μM MIL. A variety of common and strain‐specific genetic changes were discovered in MIL‐adapted parasites, including deletions at the LdMT transporter gene, single‐base mutations and changes in somy. The most obvious lipid changes in MIL‐R promastigotes occurred to phosphatidylcholines and lysophosphatidylcholines and results indicate that the Kennedy pathway is involved in MIL resistance. The inherent Sb resistance of the parasite had an impact on the changes that occurred in MIL‐R parasites, with more genetic changes occurring in Sb‐R compared with Sb‐S parasites. Initial interpretation of the changes identified in this study does not support synergies with Sb‐R in the mechanisms of MIL resistance, though this requires an enhanced understanding of the parasite's biochemical pathways and how they are genetically regulated to be verified fully.  相似文献   
52.
Cystic echinococcosis is a zoonotic parasitic disease caused by Echinococcus species. Tanzania is one of the endemic countries with cystic echinococcosis. This study focussed on identifying genotypes of Echinococcus spp. in Tanzania. We collected 7 cysts from cattle in Mwanza municipal (n=4) and Loliondo district (n=3). The cysts from Mwanza were all E. ortleppi and fertile. In contrast, the cysts from Loliondo were all E. granulosus sensu stricto and sterile. Two from the 4 cysts were a new haplotype of E. ortleppi (G5). These results can improve the preventive and control programs for humans and livestock in Tanzania. To our knowledge, this study is considered the first to identify the genotype and haplotype of Echinococcus spp. in Tanzania.  相似文献   
53.
Summary Growth and phosphorus uptake of pearl millet (Pennisetum americanum) on an unsterile, phosphorus-deficient soil was improved by the seed inoculation withAzospirillum brasilense or soil inoculation with the vesicular-arbuscular mycorrhizal fungi (Acaulospora,Gigaspora margarita, Glomus fasciculatum). These microorganisms acted synergistically when added simultaneously and the response was significant withAzospirillum brasilense + Gigaspora margarita andAzospirillum brasilense + Glomus fasciculatum combinations over uninoculated control as far as the dry matter content of shoots, root biomass and phosphorus uptake of the millet was concerned.  相似文献   
54.
Plumbago zeylanica (known as "Chitrak") is a useful Indian medicinal plant. The root of the plant and its constituents are credited with potential therapeutic properties including anti-atherogenic, cardiotonic, hepatoprotective and neuroprotective properties. To examine possible mechanisms of action of P. zeylanica (Chitrak), in relation to its reported beneficial properties, antioxidant effects of the aqueous/alcoholic extracts of root, corresponding to medicinal preparations, and the active ingredient, plumbagin, were studied. Methods used included: ferric reducing/antioxidant power (FRAP), radical scavenging of 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS), lipid peroxidation in rat liver mitochondria induced by different agents, and estimating phenolic and flavonoid content. In FRAP/DPPH assays, boiled ethanolic extracts were the most effective, while in the ABTS assay boiled aqueous extracts were the most efficient. These extracts also significantly inhibited lipid peroxidation induced by cumene hydroperoxide, ascorbate-Fe(2+) and peroxynitrite and contained high amounts of polyphenols and flavonoids. To examine the mechanisms of action in detail, antioxidant and pulse radiolysis studies with plumbagin were conducted. The hydroxyl (.OH), alkyl peroxyl (CCl(3)OO.), linoleic acid peroxyl (LOO.), and glutathiyl (GS.) radicals generate a phenoxyl radical upon reaction with plumbagin. The bimolecular rate constants were: .OH, 2.03 x 10(9) dm(3)mol(-1)s(-1); CCl(3)OO., 1.1 x 10(9) dm(3)mol(-1)s(-1); LOO., 6.7 x 10(7) dm(3)mol(-1)s(-1); and GS., 8.8 x 10(8) dm(3)mol(-1)s(-1). In conclusion, our studies reveal that extracts of P. zeylanica and its active ingredient plumbagin have significant antioxidant abilities that may possibly explain some of the reported therapeutic effects.  相似文献   
55.
Pigeonpea (Cajanus cajan) is an important grain legume of the Indian subcontinent, South-East Asia and East Africa. More than eighty five percent of the world pigeonpea is produced and consumed in India where it is a key crop for food and nutritional security of the people. Here we present the first draft of the genome sequence of a popular pigeonpea variety ??Asha??. The genome was assembled using long sequence reads of 454 GS-FLX sequencing chemistry with mean read lengths of >550?bp and >10-fold genome coverage, resulting in 510,809,477?bp of high quality sequence. Total 47,004 protein coding genes and 12,511 transposable elements related genes were predicted. We identified 1,213 disease resistance/defense response genes and 152 abiotic stress tolerance genes in the pigeonpea genome that make it a hardy crop. In comparison to soybean, pigeonpea has relatively fewer number of genes for lipid biosynthesis and larger number of genes for cellulose synthesis. The sequence contigs were arranged in to 59,681 scaffolds, which were anchored to eleven chromosomes of pigeonpea with 347 genic-SNP markers of an intra-species reference genetic map. Eleven pigeonpea chromosomes showed low but significant synteny with the twenty chromosomes of soybean. The genome sequence was used to identify large number of hypervariable ??Arhar?? simple sequence repeat (HASSR) markers, 437 of which were experimentally validated for PCR amplification and high rate of polymorphism among pigeonpea varieties. These markers will be useful for fingerprinting and diversity analysis of pigeonpea germplasm and molecular breeding applications. This is the first plant genome sequence completed entirely through a network of Indian institutions led by the Indian Council of Agricultural Research and provides a valuable resource for the pigeonpea variety improvement.  相似文献   
56.
A possible role for metabolism by the human intestinal microflora in arbutin-induced cytotoxicity was investigated using human hepatoma HepG2 cells. When the cytotoxic effects of arbutin and hydroquinone (HQ), a deglycosylated metabolite of arbutin, were compared, HQ was more toxic than arbutin. Incubation of arbutin with a human fecal preparation could produce HQ. Following incubation of arbutin with a human fecal preparation for metabolic activation, the reaction mixture was filter-sterilized to test its toxic effects on HepG2 cells. The mixture induced cytotoxicity in HepG2 cells in a concentration-dependent manner. In addition, the mixture considerably inhibited expression of Bcl-2 together with an increase in Bax expression. Likewise, activation stimulated cleavage of caspase-3 and production of reactive oxygen species in HepG2 cell cultures. Furthermore, induction of apoptosis by the intestinal microflora reaction mixture was confirmed by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling assay. Taken together, these findings suggest that the human intestinal microflora is capable of metabolizing arbutin to HQ, which can induce apoptosis in mammalian cells.  相似文献   
57.
Exploring the diversity of plant secondary metabolism requires efficient methods to obtain sufficient structural insights to discriminate previously known from unknown metabolites. De novo structure elucidation and confirmation of known metabolites (dereplication) remain a major bottleneck for mass spectrometry‐based metabolomic workflows, and few systematic dereplication strategies have been developed for the analysis of entire compound classes across plant families, partly due to the complexity of plant metabolic profiles that complicates cross‐species comparisons. 17‐hydroxygeranyllinalool diterpene glycosides (HGL‐DTGs) are abundant defensive secondary metabolites whose malonyl and glycosyl decorations are induced by jasmonate signaling in the ecological model plant Nicotiana attenuata. The multiple labile glycosidic bonds of HGL‐DTGs result in extensive in‐source fragmentation (IS‐CID) during ionization. To reconstruct these IS‐CID clusters from profiling data and identify precursor ions, we applied a deconvolution algorithm and created an MS/MS library from positive‐ion spectra of purified HGL‐DTGs. From this library, 251 non‐redundant fragments were annotated, and a workflow to characterize leaf, flower and fruit extracts of 35 solanaceous species was established. These analyses predicted 105 novel HGL‐DTGs that were restricted to Nicotiana, Capsicum and Lycium species. Interestingly, malonylation is a highly conserved step in HGL‐DTG metabolism, but is differentially affected by jasmonate signaling among Nicotiana species. This MS‐based workflow is readily applicable for cross‐species re‐identification/annotation of other compound classes with sufficient fragmentation knowledge, and therefore has the potential to support hypotheses regarding secondary metabolism diversification.  相似文献   
58.
Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO3) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO3 nanosheet photoanodes can be further enhanced by applying Co0.8Mn0.2Ox nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm?2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO3 nanosheet photoanodes. The BBNO/WO3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices.  相似文献   
59.
The effect of interactions between Casuarina species, Frankia strains and AMF on nitrogen isotope fractionation within the plant were determined under conditions where changes in source nitrogen were minimized by growing plants in mineral nitrogen-deficient conditions and without added organic N. Casuarina cunninghamiana, C. equisetifolia, C. glauca, and C. junghuniana were inoculated singly with three Frankia strains or were dual inoculated with Frankia and Glomus fasciculatum. The %N and delta 15N of separated parts of plants inoculated with the three Frankia strains or with Frankia + Glomus were not significantly different within Casuarina species. However, the slow-growing C. junghuniana differed in several variables from the other three species. There was a highly significant, linear relationship between the natural logarithms of cladode N content and delta 15N of plants of the four Casuarina species when inoculated with Frankia or with Frankia + Glomus, showing that nitrogen supply and the correlated variable, plant growth rate, were major determinants of delta 15N. Provision of small quantities of (NH4)2SO4 or KNO3 increased several-fold the growth of three of the Casuarina species when inoculated with Frankia alone or with Frankia + Glomus. Within species, mycorrhizal and non-mycorrhizal plants receiving supplementary soluble phosphate were of similar dry weights at harvest. delta 15N values for cladodes of C. cunninghamiana, C. equisetifolia and C. glauca were similar, but values for the poor growing C. junghuniana were more variable and, with the exception of plants receiving KNO3, were lower than those of the other three species. Reduced growth due to suboptimal availability of N or P had a major influence on delta 15N and, in these conditions where plants could not access significant amounts of organic N, outweighed any effects on cladode delta 15N of colonization by Glomus. delta 15N values of nodules were higher than other parts of Frankia or Frankia + Glomus inoculated Casuarinas, conceivably due to retention in nodules of fixed N, with delta 15N close to zero.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号