首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   9篇
  2023年   2篇
  2022年   3篇
  2021年   13篇
  2020年   7篇
  2019年   2篇
  2018年   9篇
  2017年   10篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   8篇
  2012年   11篇
  2011年   14篇
  2010年   16篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   4篇
  1968年   2篇
  1967年   2篇
  1966年   9篇
  1965年   3篇
  1964年   7篇
  1963年   1篇
  1960年   3篇
  1959年   1篇
  1958年   1篇
排序方式: 共有222条查询结果,搜索用时 281 毫秒
31.
Identification of full length genes along with upstream regulatory elements is important to understand its expression. Here, we report preparation of high titre genomic library and identification of a genomic clone containing Pi-k h gene with its complete upstream and downstream sequences from the rice blast resistant line Tetep. Structural analysis of protein revealed that Pi-k h has a central nucleotide binding site domain, leucine-rich repeats domain and a unique zinc-finger domain. Comparative analysis of Pi-k h protein sequence showed 64% and 45% similarity with the protein sequences of rice blast resistance genes Pi-b and Pi-ta , respectively.  相似文献   
32.
Horsegram [Macrotyloma uniflorum (Lam.) Verdc.] commonly known as kulthi or Madras gram is an important drought tolerant legume crop used as food and fodder in India and across the globe. Horsegram is tolerant to many biotic and abiotic stresses and considered a potential future food legume. Despite being a multiutility crop, insufficient genomic information is available in this species, which is otherwise required for genetic improvement. Hence, in the present work we used next-generation sequencing (NGS) technology for genome-wide development and characterization of novel simple sequence repeat (SSR) markers in horsegram. In all, 2458 SSR primer pairs were designed from NGS data and 117 SSRs were characterized in 48 diverse lines of horsegram. Cross-transferability of these markers was also checked in nine related legume species. The polymorphic SSRs revealed high diversity measures such as mean values of expected heterozygosity (He; 0.54), observed heterozygosity (Ho; 0.64), and polymorphism information content (PIC; 0.46). Analysis of molecular variance (AMOVA) revealed high degree of genetic variance within the populations. Dendrogram based on Jaccard’s similarity coefficient and principal component analysis (PCA) revealed two groups in the analyzed accessions. This observation was further confirmed by Bayesian genetic STRUCTURE analysis. The SSR markers developed herein can be used in diverse genetic analysis including association mapping in this crop and also in related legume crops with limited marker resources. Hence, this new SSR dataset can be useful for molecular breeding research in this underutilized pulse crop. In addition, genetic diversity estimates of analyzed germplasm can be important for devising future breeding programmes in horsegram.  相似文献   
33.
Baicalein (5, 6, 7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone present in some of the medicinal plants is known for its potential therapeutic effects, such as cardioprotective, anticancer and anti-inflammatory properties. However, detailed role and mechanisms behind its protective properties against different generators for oxidative stress have not been examined. In the present study, we investigated the possible protective ability of baicalein against the membrane damage caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the mechanisms involved using pulse radiolysis technique. Baicalein offered efficient protection even at a concentration of 10 microM towards membrane damage caused by lipid peroxidation induced by the gamma-radiation, peroxyl radicals, ascorbate-Fe2+ and peroxynitrite in rat liver mitochondria and heart homogenate. To elucidate its reaction mechanisms with biologically relevant radicals, transient absorption spectroscopy employing pulse radiolysis technique was used. Baicalein showed fairly high rate constants (3.7 x 10(9), 1.3 x 10(9) and 8.0 x 10(8) dm3 mol(-1) s(-1) for hydroxyl, azidyl and alkylchloroperoxyl radicals, respectively), suggesting that baicalein can act as an effective scavenger of these radicals. In each case, the phenoxyl radical of baicalein was generated. Thus, it was evident that the phenolic moiety of baicalein was responsible for the free radical scavenging process. Baicalein also reacts with linoleic acid peroxyl radical (LOO*), indicating its ability to act as a chain breaking antioxidant. Peroxynitrite-mediated radicals were shown to be reactive towards baicalein and the bimolecular rate constants were 2.5 x 10(7) and 3 x 10(8) dm3 mol(-1) s(-1) for *NO2 and CO3*(-) radicals, respectively. In conclusion, our results revealed the potential of baicalein in protecting mitochondrial membrane against oxidative damage induced by the four different agents. We propose that the protective effect is mediated via scavenging of primary and secondary radicals generated during oxidative stress.  相似文献   
34.
Charcoal root rot and wilt, are two economically important diseases of many crop plants in North and South America, Asia and Africa and some parts of Europe. Genetic variation in 43 isolates of Macrophomina phaseolina and 22 isolates of Fusarium species, collected from geographically distinct regions over a range of hosts, was studied using random amplified polymorphic DNA (RAPD) markers. Initially, 210 arbitrary nucleotide (10-mer) primers were tested for amplification of genomic DNA of one M. phaseolina isolate, 70 primers amplified the genomic DNA of M. phaseolina. One primer OPA-13 (5'-CAGCACCCAC-3') produced fingerprint profiles, which clearly distinguished between the different isolates of M. phaseolina. UPGMA analysis classified these isolates into five major groups. By primer OPA-13, 22 isolates of pathogenic and non-pathogenic Fusarium species of different formae-speciales and races, were also distinguished from M. phaseolina. This marker is useful for distinguishing between these two important plant pathogens irrespective of hosts, virulence spectrum and races. This is the first report of reliable diagnosis of two soilborne pathogens (root/collar rot and wilt causing pathogens) at the level of isolates, formae-speciales and races by a single primer RAPD procedure with uniform PCR conditions.  相似文献   
35.
Large‐scale conversion of traditional agricultural cropping systems to biofuel cropping systems is predicted to have significant impact on the hydrologic cycle. Changes in the hydrologic cycle lead to changes in rainfall and its erosive power, and consequently soil erosion that will have onsite impacts on soil quality and crop productivity, and offsite impacts on water quality and quantity. We examine regional change in rainfall erosivity and soil erosion resulting from biofuel policy‐induced land use/land cover (LULC) change. Regional climate is simulated under current and biofuel LULC scenarios for the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. The magnitude of change in rainfall erosivity under the biofuel scenario is 1.5–3 times higher than the change in total annual rainfall. Over most of the conterminous United States (~56%), the magnitude of the change in erosivity is between ?2.5% and +2.5%. A decrease in erosivity of magnitude 2.5–10% is predicted over 23% of the area, whereas an increase of the same magnitude is predicted over 14% of the area. Corresponding to the changes in rainfall erosivity and crop cover, a decrease in soil loss is predicted over 60% of the area under the biofuel scenario. In Kansas and Oklahoma, the states in which a large fraction of land area is planted with switchgrass under the biofuel scenario, soil loss is estimated to decrease 12% relative to the baseline. This reduction in soil loss is due more to changes in the crop cover factor than changes in rainfall or rainfall erosivity. This indicates that the changes in LULC, due to future cellulosic biofuel feedstock production, can have significant implications for regional soil and water resources in the United States and we recommend detailed investigation of the trade‐offs between land use and management options.  相似文献   
36.
Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the method for vitrifying specimens onto EM grids is essentially unchanged - application of ~3 μL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach.  相似文献   
37.
Summary Growth and phosphorus uptake of pearl millet (Pennisetum americanum) on an unsterile, phosphorus-deficient soil was improved by the seed inoculation withAzospirillum brasilense or soil inoculation with the vesicular-arbuscular mycorrhizal fungi (Acaulospora,Gigaspora margarita, Glomus fasciculatum). These microorganisms acted synergistically when added simultaneously and the response was significant withAzospirillum brasilense + Gigaspora margarita andAzospirillum brasilense + Glomus fasciculatum combinations over uninoculated control as far as the dry matter content of shoots, root biomass and phosphorus uptake of the millet was concerned.  相似文献   
38.
Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO3) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO3 nanosheet photoanodes can be further enhanced by applying Co0.8Mn0.2Ox nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm?2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO3 nanosheet photoanodes. The BBNO/WO3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices.  相似文献   
39.
In this study, we followed the genomic, lipidomic and metabolomic changes associated with the selection of miltefosine (MIL) resistance in two clinically derived Leishmania donovani strains with different inherent resistance to antimonial drugs (antimony sensitive strain Sb‐S; and antimony resistant Sb‐R). MIL‐R was easily induced in both strains using the promastigote‐stage, but a significant increase in MIL‐R in the intracellular amastigote compared to the corresponding wild‐type did not occur until promastigotes had adapted to 12.2 μM MIL. A variety of common and strain‐specific genetic changes were discovered in MIL‐adapted parasites, including deletions at the LdMT transporter gene, single‐base mutations and changes in somy. The most obvious lipid changes in MIL‐R promastigotes occurred to phosphatidylcholines and lysophosphatidylcholines and results indicate that the Kennedy pathway is involved in MIL resistance. The inherent Sb resistance of the parasite had an impact on the changes that occurred in MIL‐R parasites, with more genetic changes occurring in Sb‐R compared with Sb‐S parasites. Initial interpretation of the changes identified in this study does not support synergies with Sb‐R in the mechanisms of MIL resistance, though this requires an enhanced understanding of the parasite's biochemical pathways and how they are genetically regulated to be verified fully.  相似文献   
40.
Exploring the diversity of plant secondary metabolism requires efficient methods to obtain sufficient structural insights to discriminate previously known from unknown metabolites. De novo structure elucidation and confirmation of known metabolites (dereplication) remain a major bottleneck for mass spectrometry‐based metabolomic workflows, and few systematic dereplication strategies have been developed for the analysis of entire compound classes across plant families, partly due to the complexity of plant metabolic profiles that complicates cross‐species comparisons. 17‐hydroxygeranyllinalool diterpene glycosides (HGL‐DTGs) are abundant defensive secondary metabolites whose malonyl and glycosyl decorations are induced by jasmonate signaling in the ecological model plant Nicotiana attenuata. The multiple labile glycosidic bonds of HGL‐DTGs result in extensive in‐source fragmentation (IS‐CID) during ionization. To reconstruct these IS‐CID clusters from profiling data and identify precursor ions, we applied a deconvolution algorithm and created an MS/MS library from positive‐ion spectra of purified HGL‐DTGs. From this library, 251 non‐redundant fragments were annotated, and a workflow to characterize leaf, flower and fruit extracts of 35 solanaceous species was established. These analyses predicted 105 novel HGL‐DTGs that were restricted to Nicotiana, Capsicum and Lycium species. Interestingly, malonylation is a highly conserved step in HGL‐DTG metabolism, but is differentially affected by jasmonate signaling among Nicotiana species. This MS‐based workflow is readily applicable for cross‐species re‐identification/annotation of other compound classes with sufficient fragmentation knowledge, and therefore has the potential to support hypotheses regarding secondary metabolism diversification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号