首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5532篇
  免费   476篇
  国内免费   4篇
  2023年   26篇
  2022年   74篇
  2021年   130篇
  2020年   58篇
  2019年   71篇
  2018年   92篇
  2017年   77篇
  2016年   140篇
  2015年   216篇
  2014年   228篇
  2013年   286篇
  2012年   403篇
  2011年   320篇
  2010年   220篇
  2009年   181篇
  2008年   293篇
  2007年   293篇
  2006年   254篇
  2005年   227篇
  2004年   226篇
  2003年   183篇
  2002年   169篇
  2001年   184篇
  2000年   162篇
  1999年   129篇
  1998年   52篇
  1997年   44篇
  1996年   28篇
  1995年   38篇
  1994年   36篇
  1993年   35篇
  1992年   92篇
  1991年   77篇
  1990年   80篇
  1989年   84篇
  1988年   61篇
  1987年   62篇
  1986年   68篇
  1985年   68篇
  1984年   54篇
  1983年   49篇
  1982年   40篇
  1981年   28篇
  1980年   31篇
  1979年   42篇
  1978年   31篇
  1976年   27篇
  1975年   27篇
  1974年   34篇
  1973年   36篇
排序方式: 共有6012条查询结果,搜索用时 531 毫秒
961.
Among age-related neurodegenerative diseases, Parkinson's disease (PD) represents the best example for which oxidative stress has been strongly implicated. The etiology of PD remains unknown, yet recent epidemiological studies have linked exposure to environmental agents, including pesticides, with an increased risk of developing the disease. As a result, the environmental hypothesis of PD has developed, which speculates that chemical agents in the environment are capable of producing selective dopaminergic cell death, thus contributing to disease development. The use of environmental agents such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone, paraquat, dieldrin, and maneb in toxicant-based models of PD has become increasingly popular and provided valuable insight into the neurodegenerative process. Understanding the unique and shared mechanisms by which these environmental agents act as selective dopaminergic toxicants is critical in identifying pathways involved in PD pathogenesis. In this review, we discuss the neurotoxic properties of these compounds with specific focus on the induction of oxidative stress. We highlight landmark studies along with recent advances that support the role of reactive oxygen and reactive nitrogen species from a variety of cellular sources as potent contributors to the neurotoxicity of these environmental agents. Finally, human risk and the implications of these studies in our understanding of PD-related neurodegeneration are discussed.  相似文献   
962.
2',7'-Dichlorodihydrofluorescein (DCFH2) is one of the most widely used probes for detecting intracellular oxidative stress, but requires a catalyst to be oxidized by hydrogen peroxide or superoxide and reacts nonspecifically with oxidizing radicals. Thiyl radicals are produced when many radicals are "repaired" by thiols, but are oxidizing agents and thus potentially capable of oxidizing DCFH2. The aim of this study was to investigate the reactivity of thiol-derived radicals toward DCFH2 and its oxidized, fluorescent form 2',7'-dichlorofluorescein (DCF). Thiyl radicals derived from oxidation of glutathione (GSH) or cysteine (CysSH) oxidized DCFH2 with rate constants at pH 7.4 of approximately 4 or approximately 2x10(7) M(-1) s(-1), respectively. Both the rates of oxidation and the yields of DCF were pH-dependent. Glutathione-derived radicals interacted with DCF, resulting in the formation of DCFH* absorbing at 390 nm and loss of fluorescence; in contrast, cysteine-derived radicals did not cause any depletion of DCF fluorescence. We postulate that the observed apparent difference in reactivity between GS* and CysS* toward DCF is related to the formation of carbon-centered, reducing radicals from base-catalyzed isomerization of GS*. DCF formation from interaction of DCFH2 with GS* was inhibited by oxygen in a concentration-dependent manner over the physiological range. These data indicate that in applying DCFH2 to measure oxidizing radicals in biological systems, we have to consider not only the initial competition between thiols and DCFH2 for the oxidizing radicals, but also subsequent reactions of thiol-derived radicals, together with variables--including pH and oxygen concentration--which control thiyl radical chemistry.  相似文献   
963.
Women with Cushing's syndrome (CS) and polycystic ovarian syndrome (PCOS) may present with similar symptoms. Subjects with mild CS lack clinical stigmata of classical CS and often have normal laboratory tests measuring hypercortisolism. Thus, distinguishing mild CS from PCOS may be difficult. We hypothesized that either total testosterone (TT) or bioavailable testosterone (BT) levels or the calculation of the free androgen index (FAI) would be low in patients with mild CS and elevated in patients with PCOS, and could help differentiate the two conditions. TT, BT, and FAI were measured in a group of 20 patients of reproductive age with mild CS and 20 PCOS patients matched for age and BMI. We used receiver operator characteristic (ROC) curves to assess the sensitivity and specificity of these measurements for the diagnosis of CS. TT (p<0.0001), BT (p=0.02), and FAI (p=0.003) were significantly elevated in PCOS patients compared to mild CS patients. Sex hormone-binding globulin was similar in both groups. The optimal cut-point for TT was 1.39 nmol/L, yielding a sensitivity of 95% and a specificity of 70%. The cut-point for BT was 0.24 nmol/L, resulting in a sensitivity of 75% and a specificity of 80%. The cut-point for FAI was 5.7, with a sensitivity of 88% and a specificity of 60%. We conclude that TT levels may be useful to discriminate between mild CS and PCOS. In patients with signs and symptoms consistent with CS and PCOS, a TT level of <1.39 nmol/L warrants a workup for CS.  相似文献   
964.
The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.  相似文献   
965.
966.
The reflex regulation of sympathetic nerve activity has been demonstrated to be impaired in the chronic heart failure (CHF) state compared with the normal condition (Liu JL, Murakami H, and Zucker IH. Circ Res 82: 496-502, 1998). Exercise training (Ex) appears to be beneficial to patients with CHF and has been shown to reduce sympathetic outflow in this disease state (Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, and Schuler G. J Am Coll Cardiol 35: 706-713, 2000). We tested the hypothesis that Ex corrects the reduced cardiopulmonary (CP) reflex response to volume expansion in the CHF state. Normal, normal with Ex, CHF, and CHF with Ex (CHF-Ex) groups (n = 10-21) of male New Zealand White rabbits were studied. CHF was induced by chronic ventricular pacing. Rabbits were instrumented to record left ventricular end-diastolic pressure (LVEDP), left ventricular end-diastolic diameter (LVEDD), and renal sympathetic nerve activity (RSNA). Experiments were carried out with the animals in the conscious state. Volume expansion was performed with 6% dextran in normal saline at a rate of 5 ml/min to approximately 20% of estimated plasma volume without any significant effect on mean arterial pressure being exhibited. The relationships between RSNA and LVEDP and between RSNA and LVEDD were determined by linear regression; the slopes served as an index of CP reflex sensitivity. Normal rabbits exhibited a CP reflex sensitivity of -8.4 +/- 1.5%delta RSNA/mmHg. This value fell to 0.0 +/- 1.3%delta RSNA/mmHg in CHF rabbits (P < 0.001). Ex increased CP reflex sensitivity to -5.0 +/- 0.7%delta RSNA/mmHg in CHF-Ex rabbits (P < 0.05 compared with CHF). A similar trend was seen when related to the change in LVEDD. Furthermore, resting RSNA expressed as a percentage of maximum RSNA in response to cigarette smoke was also normalized by Ex in rabbits with CHF. Ex had no effect on these parameters in normal rabbits. These data confirm an impairment of CP reflex sensitivity and sympathoexcitation in CHF vs. normal animals. Ex substantially restored both CP reflex sensitivity and baseline RSNA in CHF animals. Thus Ex beneficially affects reflex regulation in CHF, thereby lowering resting sympathetic nerve activity.  相似文献   
967.
Telomerase expression strongly correlates with the grade of malignancy in glioma with inhibition illustrating a definite increase in chemosensitivity. This study was designed to investigate the effects of a green tea derivative, epigallocatechin-3-gallate (EGCG); together with either cisplatin or tamoxifen in glioma, and to investigate whether these effects are mediated through telomerase suppression. EGCG showed a significant cytotoxic effect on 1321N1 cells after 24 h and on U87-MG cells after 72 h (P < 0.001) without significantly affecting the normal astrocytes. Treatment with EGCG inhibited telomerase expression significantly (P < 0.01) and enhanced the effect of cisplatin and tamoxifen in both 1321N1 (P < 0.01) and U87-MG (P < 0.001) cells. EGCG, as a natural product has enormous potential to be an anti-cancer agent capable of enhancing tumour cell sensitivity to therapy.  相似文献   
968.
The versatility of neuronal electrical activity is largely conditioned by the expression of different structural and functional classes of K+ channels. More than 80 genes encoding the main K+ channel alpha subunits have been identified in the human genome. Alternative splicing, heteromultimeric assembly, post-translational modification and interaction with auxiliary regulatory subunits further increase the molecular and functional diversity of K+ channels. Mammalian two-pore domain K+ channels (K2P) make up one class of K+ channels along with the inward rectifiers and the voltage- and/or calcium-dependent K+ channels. Each K2P channel subunit is made up of four transmembrane segments and two pore-forming (P) domains, which are arranged in tandem and function as either homo- or heterodimeric channels. This novel structural arrangement is associated with unusual gating properties including “background” or “leak” K+ channel activity, in which the channels show constitutive activity at rest. In this review article, we will focus on the lipid-sensitive mechano-gated K2P channel TREK-1 and will emphasize on the polymodal function of this “unconventional” K+ channel. EBSA Satellite meeting: Ion channels, Leeds, July 2007.  相似文献   
969.
Bone loss due to osteoporosis or disuse such as in paraplegia or microgravity is a significant health problem. As a treatment for osteoporosis, brief exposure of intact animals or humans to low magnitude and high frequency (LMHF) mechanical loading has been shown to normalize and prevent bone loss. However, the underlying molecular changes and the target cells by which LMHF mechanical loading alleviate bone loss are not known. Here, we hypothesized that direct application of LMHF mechanical loading to osteoblasts alters their cell responses, preventing decreased bone formation induced by disuse or microgravity conditions. To test our hypothesis, preosteoblast 2T3 cells were exposed to a disuse condition using the random positioning machine (RPM) and intervened with an LMHF mechanical load (0.1–0.4 g at 30 Hz for 10–60 min/day). Exposure of 2T3 cells to the RPM decreased bone formation responses as determined by alkaline phosphatase (ALP) activity and mineralization even in the presence of a submaximal dose of BMP4 (20 ng/ml). However, LMHF mechanical loading prevented the RPM‐induced decrease in ALP activity and mineralization. Mineralization induced by LMHF mechanical loading was enhanced by treatment with bone morphogenic protein 4 (BMP4) and blocked by the BMP antagonist noggin, suggesting a role for BMPs in this response. In addition, LMHF mechanical loading rescued the RPM‐induced decrease in gene expression of ALP, runx2, osteomodulin, parathyroid hormone receptor 1, and osteoglycin. These findings suggest that preosteoblasts may directly respond to LMHF mechanical loading to induce differentiation responses. The mechanosensitive genes identified here provide potential targets for pharmaceutical treatments that may be used in combination with low level mechanical loading to better treat osteoporosis or disuse‐induced bone loss. J. Cell. Biochem. 106: 306–316, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
970.
The aim of the present study was to investigate the vibriocidal activity of bark of Syzygium cumini, leaves of Lawsonia inermis, fruits of Terminalia bellerica and identify the bioactive compounds. The vibriocidal activity of plant extracts was determined in aqueous and organic solvents, and the minimum inhibitory concentration (MIC) against Vibrio spp. using the disk diffusion method was established. The chemical constituents of the plant extracts were analysed by thin layer chromatography (TLC), the vibriocidal compounds were determined by TLC-bioautography and were further confirmed by high performance liquid chromatography (HPLC). Significant inhibitory activity was observed with ethanol extract of plants against the test bacteria while less antibacterial activity was observed in acetone, methanol and aqueous extracts. The MIC of the plant extracts ranged between 2.5 and 20 mg/ml. The TLC, TLC-bioautography and HPLC analysis showed that gallic acid and tannin present in ethanol extracts of S. cumini, tannin present in L. inermis and gallic acid present in T. bellerica may be responsible for the vibriocidal activity. S. cumini, L. inermis and T. bellerica can be used for the treatment of gastroenteritis, diarrhoea and cholera diseases after detailed investigations. We also conclude that the plants rich in gallic acid and tannin can be used as an alternative to search for new vibriocidal drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号