首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   52篇
  2023年   6篇
  2022年   16篇
  2021年   26篇
  2020年   28篇
  2019年   53篇
  2018年   28篇
  2017年   16篇
  2016年   34篇
  2015年   23篇
  2014年   35篇
  2013年   51篇
  2012年   65篇
  2011年   50篇
  2010年   36篇
  2009年   35篇
  2008年   61篇
  2007年   43篇
  2006年   44篇
  2005年   25篇
  2004年   37篇
  2003年   43篇
  2002年   17篇
  2001年   30篇
  2000年   15篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1992年   10篇
  1991年   5篇
  1990年   7篇
  1989年   12篇
  1988年   14篇
  1987年   8篇
  1986年   10篇
  1985年   7篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   9篇
  1968年   3篇
  1964年   6篇
  1961年   5篇
  1959年   5篇
排序方式: 共有1021条查询结果,搜索用时 15 毫秒
171.
172.
Chromatographic investigation of the octocoral Sinularia flexibilis afforded six new cembrane diterpenes, sinuladiterpenes A–F ( 1 – 6 , resp.), in addition to four known cembranolides, 11‐episinulariolide acetate, 11 ‐ dehydrosinulariolide, 11‐episinulariolide, and sinulariolide. Their structures were elucidated by spectroscopic analysis, especially 2D‐NMR and HR‐ESI‐MS. Compound 2 exhibited significant in vitro cytotoxic activity against human colon adenocarcinoma (WiDr) cell line.  相似文献   
173.
Bioprinting is an emerging technology in the field of tissue engineering and regenerative medicine. The process consists of simultaneous deposition of cells, biomaterial and/or growth factors under pressure through a micro-scale nozzle. Cell viability can be controlled by varying the parameters like pressure and nozzle diameter. The process itself can be a very useful tool for evaluating an in vitro cell injury model. It is essential to understand the cell responses to process-induced mechanical disturbances because they alter cell morphology and function. We carried out analysis and quantification of the degree of cell injury induced by bioprinting process. A parametric study with different process parameters was conducted to analyze and quantify cell injury as well as to optimize the parameters for printing viable cells. A phenomenological model was developed correlating the percentage of live, apoptotic and necrotic cells to the process parameters. This study incorporates an analytical formulation to predict the cell viability through the system as a function of the maximum shear stress in the system. The study shows that dispensing pressure has a more significant effect on cell viability than the nozzle diameter. The percentage of live cells is reduced significantly (by 38.75%) when constructs are printed at 40 psi compared to those printed at 5 psi.  相似文献   
174.

Background

Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.

Methodology/Principal Finding

Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.

Conclusion and Significance

Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals.  相似文献   
175.
176.
The mechanism of the arginine-rich peptide-mediated cellular uptake is currently a controversial issue. Several factors, including the type of peptide, the nature of the cargo, and the linker between them, appear to affect uptake. One of the less studied factors, which may affect the uptake mechanism, is the effect of peptide density on the surface of the cargo. Here, we examined the mechanism of cellular uptake and intracellular trafficking of liposomes modified with different densities of the octaarginine (R8) peptide. Liposomes modified with a low R8 density were taken up mainly through clathrin-mediated endocytosis, leading to extensive lysosomal degradation, whereas those modified with a high R8 density were taken up mainly through macropinocytosis and were less subject to lysosomal degradation. Furthermore, the high density R8-liposomes were able to stimulate the macropinocytosis-mediated uptake of other particles. When plasmid DNA was condensed and encapsulated in R8-liposomes, the levels of gene expression were three orders of magnitude higher for the high density liposomes. The enhanced gene expression by the high density R8-liposomes was highly impaired by blocking uptake through macropinocytosis. The different extents of gene expression from different densities of the R8 peptide on the liposomes could be explained principally by the existence of an intracellular trafficking route, but not by the uptake amount, of internalized liposomes. These results show that the density of the R8 peptide on liposomes determines the uptake mechanism and that this is directly linked to intracellular trafficking, resulting in different levels of gene expression.  相似文献   
177.
This article proposes a feeding strategy based on a kinetic model to enhance hairy roots growth. A new approach for modeling hairy root growth is used, considering that there is no nutrient limitation thanks to an appropriate feeding, and the intracellular pools are supposed to be always saturated. Thus, the model describes the specific growth rate from extracellular concentration of the major nutrients and nutrient uptakes depend on biomass growth. An optimized feeding strategy was determined thanks to the model to maintain the major nutrient levels at their optimum assuming optimal initial concentrations. The optimal feed rate is computed in open loop using kinetic model prediction or in closed loop using conductivity measurements to estimate biomass growth. Datura innoxia was chosen as the model culture system. Shake flask cultures were used to calibrate the model. Finally, cultures in bioreactor were performed to validate the model and the control laws. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
178.
The neo-vascularization of the host site is crucial for the primary fixation and the long-term stability of the bone-implant interface. Our aim was to investigate the progression of endothelial cell population in the first weeks of healing. We proposed a theoretical reactive model to study the role of initial conditions, random motility, haptotaxis and chemotaxis in interactions with fibronectin factors and transforming angiogenic factors. The application of governing equations concerned a canine experimental implant and numerical experiments based upon statistical designs of experiments supported the discussion. We found that chemotaxis due to transforming angiogenic factors was attracting endothelial cells present into the host bone. Haptotaxis conditioned by fibronectin factors favored cells adhesion to the host bone. The combination of diffusive and reactive effects nourished the wave front migration of endothelial cells from the host bone towards the implant. Angiogenesis goes together with new-formed bone formation in clinics, so the similarity of distribution patterns of mineralized tissue observed in-vivo and the spatio-temporal concentration of endothelial cells predicted by the model, tended to support the reliability of our theoretical approach.  相似文献   
179.
180.

Background

The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. Some members of the gene family have been shown to be upregulated by environmental stresses including low water availability and high salinity. Caleosin 3 from wheat has been shown to interact with the α-subunit of the heterotrimeric G proteins, and to act as a GTPase activating protein (GAP). This study characterizes the size and diversity of the gene family in wheat and related species and characterizes the differential tissue-specific expression of members of the gene family.

Results

A total of 34 gene family members that belong to eleven paralogous groups of caleosins were identified in the hexaploid bread wheat, T. aestivum. Each group was represented by three homeologous copies of the gene located on corresponding homeologous chromosomes, except the caleosin 10, which has four gene copies. Ten gene family members were identified in diploid barley, Hordeum vulgare, and in rye, Secale cereale, seven in Brachypodium distachyon, and six in rice, Oryza sativa. The analysis of gene expression was assayed in triticale and rye by RNA-Seq analysis of 454 sequence sets and members of the gene family were found to have diverse patterns of gene expression in the different tissues that were sampled in rye and in triticale, the hybrid hexaploid species derived from wheat and rye. Expression of the gene family in wheat and barley was also previously determined by microarray analysis, and changes in expression during development and in response to environmental stresses are presented.

Conclusions

The caleosin gene family had a greater degree of expansion in the Triticeae than in the other monocot species, Brachypodium and rice. The prior implication of one member of the gene family in the stress response and heterotrimeric G protein signaling, points to the potential importance of the caleosin gene family. The complexity of the family and differential expression in various tissues and under conditions of abiotic stress suggests the possibility that caleosin family members may play diverse roles in signaling and development that warrants further investigation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-239) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号