首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1310篇
  免费   151篇
  国内免费   9篇
  2022年   5篇
  2021年   20篇
  2020年   17篇
  2019年   21篇
  2018年   13篇
  2017年   20篇
  2016年   37篇
  2015年   56篇
  2014年   58篇
  2013年   81篇
  2012年   93篇
  2011年   60篇
  2010年   45篇
  2009年   44篇
  2008年   58篇
  2007年   59篇
  2006年   64篇
  2005年   64篇
  2004年   42篇
  2003年   41篇
  2002年   40篇
  2001年   45篇
  2000年   38篇
  1999年   47篇
  1998年   25篇
  1997年   18篇
  1996年   21篇
  1995年   13篇
  1994年   29篇
  1993年   20篇
  1992年   32篇
  1991年   18篇
  1990年   24篇
  1989年   25篇
  1988年   15篇
  1987年   14篇
  1986年   17篇
  1985年   16篇
  1984年   11篇
  1983年   15篇
  1982年   10篇
  1981年   5篇
  1980年   4篇
  1979年   10篇
  1978年   10篇
  1977年   13篇
  1976年   6篇
  1974年   9篇
  1972年   3篇
  1948年   2篇
排序方式: 共有1470条查询结果,搜索用时 15 毫秒
41.
Two fractions of agglutination activity towards fluorescent pseudomonads were detected in root washes of potato, tomato, wheat, and bean. High-molecular-mass (>106 Da) components in crude root washes agglutinated only particular saprophytic, fluorescent Pseudomonas isolates. Ion-exchange treatment of the crude root washes resulted in preparations of lower-molecular-mass (105 to 106 Da) fractions which agglutinated almost all Pseudomonas isolates examined. Also, components able to suppress agglutination reactions of pseudomonads with the lower-molecular-mass root components were detected in crude root washes of all crops studied. Pseudomonas isolates were differentially agglutinated by both types of root components. The involvement of these two types of root components in short-term adherence and in colonization was studied in potato, tomato, and grass, using Pseudomonas isolates from these crops. Short-term adherence of isolates to roots was independent of their agglutination with either type of root components. With agglutination-negative mutants, the high-molecular-mass components seemed to be involved in adherence of Pseudomonas putida Corvallis to roots of all crops studied. Short-term adherence to roots of four Pseudomonas isolates could be influenced by addition of both crude and ion-exchange-treated root washes, depending on their agglutination phenotype with these root wash preparations. Potato root colonization by 10 different isolates from this crop, over a period of 7 days, was not correlated with their agglutination phenotype. Agg- mutants of P. putida Corvallis were not impaired in root colonization. It is concluded that the root agglutinins studied can be involved in short-term adherence of pseudomonads to roots but do not play a decisive role in their root colonization.  相似文献   
42.
43.
Wounding of plants by insects is often mimicked in the laboratory by mechanical means such as cutting or crushing, and has not been compared directly with other forms of biotic stress such as virus infection. To compare the response of plants to these types of biotic and abiotic stress, trypsin inhibitor (TI) activity induced locally and systemically in mature tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon esculentum L.) plants was followed for 12 days. In tobacco, cutting, crushing and insect feeding all induced comparable levels of TI activity of approx. 5 nmol·(mg leaf protein)?1 in wounded leaves, while tobacco mosaic virus (TMV) infection of tobacco induced 10-fold lower amounts in the infected leaves. In tomato, feeding by insects also led to the induction of a level of TI activity of 5 nmol·(mg leaf protein)?1. In contrast, both cutting and crushing of tomato leaves induced 10-fold higher amounts. These data show that biotic stress, in the form of insect feeding and TMV infection, and abiotic stress, in the form of wounding, have different effects on local levels of induced TI activity in mature tobacco and tomato plants. Irrespective of the type of wounding, in neither tobacco nor tomato could systemic induction of TI activity be observed in nearby unwounded leaves, which suggests that systemic induction of TI activity in mature tobacco and tomato plants is different from systemic TI induction in seedlings. Wounding of tobacco leaves, however, did increase the responsiveness to wounding elsewhere in the plant, as measured by an increased induction of TI activity.  相似文献   
44.
Bio-availability of phosphorus in sediments of the western Dutch Wadden Sea   总被引:6,自引:0,他引:6  
The purpose of this study was to make a prognosis of the effects of extended purification of terrestrial waste water, reaching the Wadden Sea by the River Rhine and Lake IJssel, on the phosphate concentration in the western Wadden Sea.The quantities of different phosphorus fractions in intertidal and subtidal sediments of the Marsdiep tidal basin (western Dutch Wadden Sea) were measured. Different methods are applied to determine the amount of phosphorus that can be released from these sediments. The direct bioavailability is determined by inoculating sediment suspensions with a natural mixture of precultured micro-organisms from the sampling area. A second approach is the measurement of the phosphate release under different redox conditions. Sequential extraction of sediment samples with different solvents is also applied. Under the present conditions and compared to the nutrient loads from fresh water (Lake IJssel) and from the North Sea, the phosphorus stored in the sediments of the western Dutch Wadden Sea plays a minor role in the total supply to micro-algae and bacteria. The bulk of the biologically available phosphorus in the sediments originates from the metal-associated fraction. Releasable phosphate may contribute to the local annual primary production to an extent of ca 45 to ca 150 g C m–2 a–1. The total amount of phosphorus in the sediment (mainly calcite associated) is twice to 6 times the biologically available amount.  相似文献   
45.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
46.
The nucleotide sequence of trkA, a gene encoding a surface component of the constitutive K+-uptake systems TrkG and TrkH from Escherichia coli, was determined. The structure of the TrkA protein deduced from the nucleotide sequence accords with the view that TrkA is peripherally bound to the inner side of the cytoplasmic membrane. Analysis by a dot matrix revealed that TrkA is composed of similar halves. The M-terminal part of each TrkA half (residues 1–130 and 234–355, respectively) is similar to the complete NAD+-binding domain of NAD+-dependent dehydrogenases. The C-terminal part of each TrkA half (residues 131–233 and 357–458, respectively) aligns with the first 100 residues of the catalytic domain of glyceraldehyde-3-phosphate dehydrogenase. Strong u.v. illumination at 252 nm led to cross-linking of NAD+ or NADH, but not of ATP to the isolated TrkA protein.  相似文献   
47.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
48.
The currently widespread abandoning of agricultural land use in Western Europe offers new opportunities for ecological restoration and nature conservation. This is illustrated for abandoned arable fields and for permanent grasslands cut for hay after the cessation of fertilizer application. Although initiated by a sudden reduction of nutrient input to the system, the changing nutrient supply from the soil is considered to be the main driving force of succession. The soil nutrient supply is affected by soil organisms, both directly (root symbionts and herbivores) and indirectly (nutrient mineralization from dead organic matter). It is argued that because of the close association of changes in species diversity with changes in the functioning of ecosystems, biodiversity has to be studied in an ecosystem ecology context.  相似文献   
49.
50.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号