首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2654篇
  免费   87篇
  国内免费   7篇
  2023年   27篇
  2022年   63篇
  2021年   162篇
  2020年   48篇
  2019年   92篇
  2018年   83篇
  2017年   71篇
  2016年   101篇
  2015年   133篇
  2014年   150篇
  2013年   209篇
  2012年   214篇
  2011年   181篇
  2010年   90篇
  2009年   99篇
  2008年   121篇
  2007年   112篇
  2006年   123篇
  2005年   117篇
  2004年   79篇
  2003年   77篇
  2002年   53篇
  2001年   23篇
  2000年   24篇
  1999年   20篇
  1998年   11篇
  1997年   15篇
  1996年   14篇
  1995年   17篇
  1994年   18篇
  1993年   16篇
  1992年   8篇
  1991年   13篇
  1989年   8篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   18篇
  1984年   9篇
  1983年   10篇
  1982年   6篇
  1981年   13篇
  1980年   15篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
排序方式: 共有2748条查询结果,搜索用时 390 毫秒
141.
Shaheen  A.  Afridi  W. A.  Mahboob  S.  Sana  M.  Zeeshan  N.  Ismat  F.  Mirza  O.  Iqbal  M.  Rahman  M. 《Molecular Biology》2019,53(4):596-605
Molecular Biology - Acriflavine resistance protein B (AcrB) serves as prototype for multidrug resistance (MDR) efflux transporters of resistance nodulation division (RND) superfamily. AcrB has been...  相似文献   
142.
143.
Plant Cell, Tissue and Organ Culture (PCTOC) - Four serotypes of the dengue virus that can cause severe disease in humans greatly increases the complexity of vaccine development. In this study, we...  相似文献   
144.
145.
Wetlands Ecology and Management - Bangladesh has the single largest tract of naturally growing mangrove forest as well as the world’s largest manmade mangrove forest on newly accreted land in...  相似文献   
146.
N-benzhydrylpiperazine and 1,3,4-oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N-benzhydrylpiperazine clubbed with 1,3,4-oxadiazoles ( 4a–4h ) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N-benzhydryl-4-((5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration-dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration-dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase-3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.  相似文献   
147.
Insulin resistance leads to myocardial contractile dysfunction and deranged autophagy although the underlying mechanism or targeted therapeutic strategy is still lacking. This study was designed to examine the impact of inhibition of the cytochrome P450 2E1 (CYP2E1) enzyme on myocardial function and mitochondrial autophagy (mitophagy) in an Akt2 knockout model of insulin resistance. Adult wild-type (WT) and Akt2?/? mice were treated with the CYP2E1 inhibitor diallyl sulfide (100?mg/kg/d, i.p.) for 4?weeks. Cardiac geometry and function were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate autophagy, mitophagy, inducible NOS (iNOS), and the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex. Akt2 deletion triggered insulin resistance, compromised cardiac contractile and intracellular Ca2+ property, mitochondrial ultrastructural damage, elevated O2 production, as well as suppressed autophagy and mitophagy, accompanied with elevated levels of NLRP3 and iNOS, the effects of which were significantly attenuated or ablated by diallyl sulfide. In vitro studies revealed that the NLRP3 activator nigericin nullified diallyl sulfide-offered benefit against Akt2 knockout on cardiomyocyte mechanical function and mitophagy (using Western blot and colocalization of GFP-LC3 and MitoTracker Red). Moreover, inhibition of iNOS but not mitochondrial ROS production attenuated Akt2 deletion-induced activation of NLRP3, substantiating a role for iNOS-mediated NLRP3 in insulin resistance-induced changes in mitophagy and cardiac dysfunction. In conclusion, these data depict that insulin resistance through CYP2E1 may contribute to the pathogenesis of myopathic changes including myocardial contractile dysfunction, oxidative stress and mitochondrial injury, possibly through activation of iNOS and NLRP3 signaling.  相似文献   
148.
Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.  相似文献   
149.
Heterogeneity within the glycocalyx influences cell adhesion mechanics and signaling. However, the role of specific glycosylation subtypes in influencing cell mechanics via alterations of receptor function remains unexplored. It has been shown that the addition of sialic acid to terminal glycans impacts growth, development, and cancer progression. In addition, the sialyltransferase ST6Gal-I promotes epidermal growth factor receptor (EGFR) activity, and we have shown EGFR is an ‘allosteric mechano-organizer’ of integrin tension. Here, we investigated the impact of ST6Gal-I on cell mechanics. Using DNA-based tension gauge tether probes of variable thresholds, we found that high ST6Gal-I activity promotes increased integrin forces and spreading in Cos-7 and OVCAR3, OVCAR5, and OV4 cancer cells. Further, employing inhibitors and function-blocking antibodies against β1, β3, and β5 integrins and ST6Gal-I targets EGFR, tumor necrosis factor receptor, and Fas cell surface death receptor, we validated that the observed phenotypes are EGFR-specific. We found that while tension, contractility, and adhesion are extracellular-signal-regulated kinase pathway-dependent, spreading, proliferation, and invasion are phosphoinositide 3-kinase-Akt serine/threonine kinase dependent. Using total internal reflection fluorescence microscopy and flow cytometry, we also show that high ST6Gal-I activity leads to sustained EGFR membrane retention, making it a key regulator of cell mechanics. Our findings suggest a novel sialylation-dependent mechanism orchestrating cellular mechanics and enhancing cell motility via EGFR signaling.  相似文献   
150.
This study, aimed at elucidating changes in the foliar and cambial behavior in Azadirachta indica (Neem tree) due to coal-smoke pollution, has revealed inhibitory effects of pollution stress on leaf pigments concentrations, nitrate reductase activity and the contents of reducing sugars and total N content, whereas stimulatory effects were given on stomatal index and nitrate and sulphur contents. Under smoke effects, stomatal conductance was low, leading to a drop in the net photosynthetic rate and a rise in the internal CO2 concentration of leaf. Cambial reactivation in the stem was delayed at the polluted site. Although the total span of the cambial activity was reduced, greater amount of wood was observed to accumulate in the stem axis under heavy pollution stress. Vessel proportion in the wood increased, whereas size of vessel elements and xylem fibers decreased. “Vulnerability factor” (ratio between mean vessel diameter and mean vessel abundance) and “mesomorphic ratio” (multiplication product of vulnerability factor and mean length of vessel element) of the stem–wood, both declined with increase in the pollution stress, thus indicating a tendency of the species for shifting towards xeromorphy when grown under stress. Given the opposite trends of photosynthetic rate and wood increment, the carbon-partitioning pattern rather than the photosynthetic rate seems to have influenced the accumulation of new wood. The Neem tree proves to be suitable for growing in the polluted areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号