首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   14篇
  208篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   16篇
  2018年   12篇
  2017年   10篇
  2016年   5篇
  2015年   11篇
  2014年   20篇
  2013年   14篇
  2012年   16篇
  2011年   22篇
  2010年   14篇
  2009年   9篇
  2008年   4篇
  2007年   9篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2001年   3篇
  2000年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有208条查询结果,搜索用时 0 毫秒
71.
The effects of salt stress on growth parameters, free proline content, ion accumulation, lipid peroxidation, and several antioxidative enzymes activities were investigated in S. persica and S. europaea. The seedlings were grown for 2 months in half-strength Hoagland solution and treated with different concentrations of NaCl (0, 85, 170, 340, and 510 mM) for 21 days. The fresh and dry weights of both species increased significantly at 85 and 170 mM NaCl and decreased at higher concentrations. Salinity increased proline content in both the species as compared to that of control. Sodium (Na+) content in roots and shoots increased, whereas K+ and Pi content in both organs decreased. At all NaCl concentrations, the total amounts of Na+ and K+ were higher in shoots than in roots. Malondialdehyde (MDA) content declined at moderate NaCl concentrations (85 and 170 mM) and increased at higher levels. With increased salinity, superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) activities also increased gradually in both species. In addition, it seems that GPX, CAT, and SOD activities play an essential protective role in the scavenging reactive oxygen species (ROS) in both species. Native polyacrylamide gel electrophoresis (PAGE) indicated different isoform profiles between S. persica and S. europaea concerning antioxidant enzymes. These results showed that S. persica exhibits a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea possibly by maintaining and/or increasing growth parameters, ion accumulation, and antioxidant enzyme activities.  相似文献   
72.
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is dependent on monovalent cations, K(+) or NH(4)(+), for high activity. We have shown previously that Glu-69, which is a ligand to the bound cation, is important in monovalent cation binding and activation [Sundararaju, B., Chen, H., Shillcutt, S., and Phillips, R. S. (2000) Biochemistry 39, 8546-8555]. Lys-256 is located in the monovalent cation binding site of TPL, where it forms a hydrogen bond with a structural water bound to the cation. This lysine residue is highly conserved in sequences of TPL and the paralogue, tryptophan indole-lyase. We have now prepared K256A, K256H, K256R, and E69D/K256R mutant TPLs to probe the role of Lys-256 in monovalent cation binding and activation. K256A and K256H TPLs have low activity (k(cat)/K(m) values of 0.01-0.1%), are not activated by monovalent cations, and do not exhibit fluorescence emission at 500 nm from the PLP cofactor. In contrast, K256R TPL has higher activity (k(cat)/K(m) about 10% of wild-type TPL), is activated by K(+), and exhibits fluorescence emission from the PLP cofactor. K256A, K256H, and K256R TPLs bind PLP somewhat weaker than wild-type TPL. E69D/K256R TPL was prepared to determine if the guanidine side chain could substitute for the monovalent cation. This mutant TPL has wild-type activity with S-Et-L-Cys or S-(o-nitrophenyl)-L-Cys but has no detectable activity with L-Tyr. E69D/K256R TPL is not activated by monovalent cations and does not show PLP fluorescence. In contrast to wild-type and other mutant TPLs, PLP binding to E69D/K256R is very slow, requiring several hours of incubation to obtain 1 mol of PLP per subunit. Thus, E69D/K256R TPL appears to have altered dynamics. All of the mutant TPLs react with inhibitors, L-Ala, L-Met, and L-Phe, to form equilibrating mixtures of external aldimine and quinonoid intermediates. Thus, Lys-256 is not the base which removes the alpha-proton during catalysis. The results show that the function of Lys-256 in TPL is in monovalent cation binding and activation.  相似文献   
73.
Mammalian cerebral cortices are characterized by elaborate convolutions. Radial convolutions exhibit homology across primate species and generally are easily identified in individuals of the same species. In contrast, circumferential convolutions vary across species as well as individuals of the same species. However, systematic study of circumferential convolution patterns is lacking. To address this issue, we utilized structural MRI (sMRI) and diffusion MRI (dMRI) data from primate brains. We quantified cortical thickness and circumferential convolutions on gyral banks in relation to axonal pathways and density along the gray matter/white matter boundaries. Based on these observations, we performed a series of computational simulations. Results demonstrated that the interplay of heterogeneous cortex growth and mechanical forces along axons plays a vital role in the regulation of circumferential convolutions. In contrast, gyral geometry controls the complexity of circumferential convolutions. These findings offer insight into the mystery of circumferential convolutions in primate brains.  相似文献   
74.
Cortical folding, or convolution of the brain, is a vital process in mammals that causes the brain to have a wrinkled appearance. The existence of different types of prenatal solid tumors may alter this complex phenomenon and cause severe brain disorders. Here we interpret the effects of a growing solid tumor on the cortical folding in the fetal brain by virtue of theoretical analyses and computational modeling. The developing fetal brain is modeled as a simple, double-layered, and soft structure with an outer cortex and an inner core, in combination with a circular tumor model imbedded in the structure to investigate the developmental mechanism of cortical convolution. Analytical approaches offer introductory insight into the deformation field and stress distribution of a developing brain. After the onset of instability, analytical approaches fail to capture complex secondary evolution patterns, therefore a series of non-linear finite element simulations are carried out to study the crease formation and the influence from a growing solid tumor inside the structure. Parametric studies show the dependency of the cortical folding pattern on the size, location, and growth speed of a solid tumor in fetal brain. It is noteworthy to mention that there is a critical distance from the cortex/core interface where the growing tumor shows its pronounced effect on the cortical convolution, and that a growing tumor decreases the gyrification index of cortical convolution while its stiffness does not have a profound effect on the gyrification process.  相似文献   
75.
76.
The effects of salt stress on dry mass, lipid peroxidation, polyphenol and hydrogen peroxide content and activities of antioxidative enzymes were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under a broad range of NaCl concentrations (0, 100, 200, and 300 mM) on Murashige and Skoog medium for 45 d. Dry mass of both species increased at low (100 mM) salinity but decreased at higher NaCl concentrations. Malondialdehyde (MDA) content decreased at low salinity, whereas increased at 200 and 300 mM NaCl. H2O2 content in S. europaea was considerably enhanced by salinity, but it was not significantly affected in S. persica. The salt stress progressively enhanced the polyphenol content in S. persica, whereas in S. europaea, it increased with respect to the control only at higher salinities. In both species, the salinity progressively enhanced the superoxide dismutase (SOD) and peroxidase (POD) activities, whereas the CAT activity was only registered at the low salinity and the APX activity decreaseed in both species. The results indicate that S. persica exhibited a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea.  相似文献   
77.
A variety of Hantzsch 1,4-dihydropyridines were oxidized to the corresponding pyridines in high yields in the presence of H(6)PMo(9)V(3)O(40), a Keggin type heteropolyacid, in refluxing acetic acid. The heteropolyacid was found to be reusable.  相似文献   
78.
Although remarkable results have been attained by adoptively transferring T cells expressing fully murine and/or humanized anti-CD19 chimeric antigen receptors (CARs) to treat B cell malignancies, evidence of human anti-mouse immune responses against CARs provides a rationale for the development of less immunogenic CARs. By developing a fully human CAR (huCAR), these human anti-mouse immune responses are likely eliminated. This, perhaps, not only increases the persistence of anti-CD19 CAR T cells—thereby reducing the risk of tumor relapse—but also facilitates administration of multiple, temporally separated doses of CAR T cells to the same recipient. To these ends, we have designed and constructed a second-generation fully human anti-CD19 CAR (or huCAR19) containing a fully human single-chain variable fragment (ScFv) fused with a CD8a hinge, a 4-1BB transmembrane domain and intracellular T cell signaling domains of 4-1BB and CD3z. T cells expressing this CAR specifically recognized and lysed CD19+ target cells produced cytokines and proliferated in vitro. Moreover, cell volume data revealed that our huCAR construct cannot induce antigen-independent tonic signaling in the absence of cognate antigen. Considering our results, our anti-CD19 huCAR may overcome issues of transgene immunogenicity that plague trials utilizing CARs containing mouse-derived ScFvs. These results suggest that this huCAR19 be safely and effectively applied for adaptive T cell immunotherapy in clinical practice.  相似文献   
79.
Diverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution. A novel evolution parameter (Ev) is proposed to quantify the flow capacity of vascular structures. Ev is defined as the ratio of the flow conductance of an evolving structure (configuration with imperfection) to the flow conductance of structure with least imperfection. Attaining higher Ev enables the structure to expedite flow circulation with less energy dissipation. For both Newtonian and non-Newtonian fluids, the evolution parameter was developed as a function of geometrical shape factors in laminar and turbulent fully developed flows. It was found that the non-Newtonian or Newtonian behavior of fluid as well as flow behavior such as laminar or turbulent behavior affects the evolution parameter. Using measured vascular morphometric data of various organs and species, the evolution parameter was calculated. The evolution parameter of the tree structures in biological systems was found to be in the range of 0.95 to 1. The conclusion is that various organs in various species have high capacity to facilitate flow within their respective vascular structures.  相似文献   
80.
An acceptable strategy to incorporate canthaxanthin (CX) as a natural colorant into products is by means of oil-in-water emulsions. The used CX in this study was produced by bacterium Dietzia natronolimnaea HS-1 using a batch bioreactor system. A central composite rotatable design-response surface methodology (CCRD-RSM) consisting of three-factored factorial design with five levels was applied for analysis of the results to obtain the optimal formulation of emulsions. Three independent variables including fenugreek gum (FG, 0.2-0.5%, w/w), coconut oil (CO, 6-10%, w/w), and CO/CX ratio (10:1-50:1) were transformed to coded values and second-order polynomial models was developed to predict the responses (p<0.0001). The studied independent variables were the stability, viscosity and droplet size properties such as volume-weighted mean diameter (D(43)), specific surface area (S(v)) and polydispersity index (PDI) of emulsions. The 3-D response surface plot derived from the mathematical models was used to determine the optimal conditions. Main emulsion components under the optimum conditions ascertained presently by RSM: 50:1 CO/CX ratio, 0.49% (w/w) FG content and 6.28% (w/w) CO concentration. At this optimum point, stability, viscosity, D(43), S(v) and PDI were 90.6%, 0.0118Pas, 0.595μm, 12.03m(2)/ml and 1.380, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号