首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   14篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   16篇
  2018年   12篇
  2017年   10篇
  2016年   5篇
  2015年   11篇
  2014年   20篇
  2013年   14篇
  2012年   16篇
  2011年   22篇
  2010年   14篇
  2009年   9篇
  2008年   4篇
  2007年   9篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2001年   3篇
  2000年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有207条查询结果,搜索用时 31 毫秒
191.
Serologic tests are widely accepted for diagnosing Toxoplasma gondii but purification and standardization of antigen needs to be improved. Recently, surface tachyzoite and bradyzoite antigens have become more attractive for this purpose. In this study, diagnostic usefulness of 3 recombinant antigens (SAG1, SAG2, and SAG3) were evaluated, and their efficacy was compared with the available commercial ELISA. The recombinant plasmids were transformed to JM109 strain of Escherichia coli, and the recombinants were expressed and purified. Recombinant SAG1, SAG2, and SAG3 antigens were evaluated using different groups of sera in an ELISA system, and the results were compared to those of a commercial IgG and IgM ELISA kit. The sensitivity and specificity of recombinant surface antigens for detection of anti-Toxoplasma IgG in comparison with commercially available ELISA were as follows: SAG1 (93.6% and 92.9%), SAG2 (100.0% and 89.4%), and SAG3 (95.4% and 91.2%), respectively. A high degree of agreement (96.9%) was observed between recombinant SAG2 and commercial ELISA in terms of detecting IgG anti-Toxoplasma antibodies. P22 had the best performance in detecting anti-Toxoplasma IgM in comparison with the other 2 recombinant antigens. Recombinant SAG1, SAG2, and SAG3 could all be used for diagnosis of IgG-specific antibodies against T. gondii.  相似文献   
192.
The enteric nervous system is thought to originate solely from the neural crest. Transgenic lineage tracing revealed a novel population of clonal pancreatic duodenal homeobox-1 (Pdx1)-Cre lineage progenitor cells in the tunica muscularis of the gut that produced pancreatic descendants as well as neurons upon differentiation in vitro. Additionally, an in vivo subpopulation of endoderm lineage enteric neurons, but not glial cells, was seen especially in the proximal gut. Analysis of early transgenic embryos revealed Pdx1-Cre progeny (as well as Sox-17-Cre and Foxa2-Cre progeny) migrating from the developing pancreas and duodenum at E11.5 and contributing to the enteric nervous system. These results show that the mammalian enteric nervous system arises from both the neural crest and the endoderm. Moreover, in adult mice there are separate Wnt1-Cre neural crest stem cells and Pdx1-Cre pancreatic progenitors within the muscle layer of the gut.  相似文献   
193.
Silica-encapsulated magnetic nanoparticles (MNPs) were prepared via microemulsion method. The products were characterized by high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). MNPs with no observed cytotoxic activity against human lung carcinoma cell and brine shrimp lethality were used as suitable support for glucose oxidase (GOD) immobilization. Binding of GOD onto the support was confirmed by the FTIR spectra. The amount of immobilized GODs was 95 mg/g. Storage stability study showed that the immobilized GOD retained 98% of its initial activity after 45 days and 90% of the activity was also remained after 12 repeated uses. Considerable enhancements in thermal stabilities were observed for the immobilized GOD at elevated temperatures up to 80°C and the activity of immobilized enzyme was less sensitive to pH changes in solution.  相似文献   
194.
Opioid receptors play an important role in modulation of hyperalgesia in inflamed tissues, but chronic morphine application induces such side effects as tolerance. There is near communications between cytokines and mu opioid receptor expression. This study was aimed to assess the role of serum IL-10 in morphine tolerance development during adjuvant-induced arthritis. Adjuvant arthritis (AA) was induced on day 0 by single injection of Complete Freund’s Adjuvant (CFA) into the rats’ hindpaw. Hyperalgesia, edema, and spinal mu opioid receptor (mOR) variations were assessed on 0, 7, 14, and 21 days of the study. For assessment of the morphine tolerance development, morphine effective dose (4 mg/kg) was administered from the 14th day after CFA injection and continued until the morphine post-dose paw withdrawal latency (PWL); it did not significantly differ from the baseline. For assessment of the effects of IL-10 on tolerance induction, a neutralizing dose (ND50) of anti-IL-10 was administered daily during different stages of the study. AA induction in the right hindpaw of rats resulted in unilateral inflammation and hyperalgesia within 21 days of the study. Anti-IL-10 antibody administration in the AA rats induced marked elevation of hyperalgesia compared to the AA control group. Our data also indicated that morphine effective anti-hyperalgesic dose significantly decreased in the AA rats compared to the control group, which this symptom was aligned with spinal mu opioid receptor (mOR) expression increase during AA. Moreover, there was a significant difference in morphine tolerance induction between the AA and control rats, and our results also demonstrated that IL-10 played an important role in tolerance-induction process. It can be concluded that morphine tolerance slowly progressed when administered morphine effective dose was reduced during AA chronic inflammation. On the other hand, it seems that increased level of serum IL-10 may affect morphine tolerance development during inflammation.  相似文献   
195.
Coumarins are a well-known group of natural products distributed in the plant kingdom especially in the family Apiaceae with various biological activities. Isoarnottinin 4′-glucoside is a simple glycosylated coumarin found previously in a few genera of Apiaceae, and its biological activities have not been previously described in details. In the present paper, the compound was isolated from Prangos uloptera (Apiaceae) leaves using HPLC techniques. Antimicrobial, phytotoxic and cytotoxic activities of the compound were evaluated by disk diffusion, lettuce assay and MTT method. Our results indicated that the compound has high antibacterial effect against Erwinia carotovora, a common plant pathogen with MIC value of 100 μg/ml. The compound also exhibited significant phytotoxic activity against lettuce and modest cytotoxic activity against HeLa cell line with IC50 of 0.84 mg/ml. It could be concluded that isoarnottinin 4′-glucoside may play phytoalexin or allelopathic role for plant and may be a candidate for an antibacterial agent or a bioherbicide.  相似文献   
196.
The phonon and thermal properties of different single- ((n,0) (n = 7,8,9,10,14,15)) and double-walled carbon nanotubes ((7, 0) @ (14, 0), (8, 0) @ (14, 0), (9, 0) @ (15, 0) and (10, 0) @ (15, 0),) were calculated using the combination of density functional theory and non-equilibrium Green’s function methods. It was found that the Seebeck and Peltier coefficients for some of the single- and multi-walled carbon nanotubes have negative values. Moreover, in sharp contrast to low ?T, the higher thermoelectric figure of merit is anticipated at the higher temperature. The effect of the atoms number per unit cell on the phonons energies outweighs the effect of the vacuum and the size of the tubes for DWCNTs. All in all, the electron–phonon coupling generates the roughly plethora of thermoelectric coefficients and thermal conductance.  相似文献   
197.
Mammalian cerebral cortices are characterized by elaborate convolutions. Radial convolutions exhibit homology across primate species and generally are easily identified in individuals of the same species. In contrast, circumferential convolutions vary across species as well as individuals of the same species. However, systematic study of circumferential convolution patterns is lacking. To address this issue, we utilized structural MRI (sMRI) and diffusion MRI (dMRI) data from primate brains. We quantified cortical thickness and circumferential convolutions on gyral banks in relation to axonal pathways and density along the gray matter/white matter boundaries. Based on these observations, we performed a series of computational simulations. Results demonstrated that the interplay of heterogeneous cortex growth and mechanical forces along axons plays a vital role in the regulation of circumferential convolutions. In contrast, gyral geometry controls the complexity of circumferential convolutions. These findings offer insight into the mystery of circumferential convolutions in primate brains.  相似文献   
198.
Cortical folding, or convolution of the brain, is a vital process in mammals that causes the brain to have a wrinkled appearance. The existence of different types of prenatal solid tumors may alter this complex phenomenon and cause severe brain disorders. Here we interpret the effects of a growing solid tumor on the cortical folding in the fetal brain by virtue of theoretical analyses and computational modeling. The developing fetal brain is modeled as a simple, double-layered, and soft structure with an outer cortex and an inner core, in combination with a circular tumor model imbedded in the structure to investigate the developmental mechanism of cortical convolution. Analytical approaches offer introductory insight into the deformation field and stress distribution of a developing brain. After the onset of instability, analytical approaches fail to capture complex secondary evolution patterns, therefore a series of non-linear finite element simulations are carried out to study the crease formation and the influence from a growing solid tumor inside the structure. Parametric studies show the dependency of the cortical folding pattern on the size, location, and growth speed of a solid tumor in fetal brain. It is noteworthy to mention that there is a critical distance from the cortex/core interface where the growing tumor shows its pronounced effect on the cortical convolution, and that a growing tumor decreases the gyrification index of cortical convolution while its stiffness does not have a profound effect on the gyrification process.  相似文献   
199.
200.
Advances in medical imaging and image processing are paving the way for personalised cardiac biomechanical modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling—derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechanical analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号