排序方式: 共有122条查询结果,搜索用时 12 毫秒
81.
Ennadir J Hassikou R Ohmani F Hammamouchi J Bouazza F Qasmaoui A Mennane Z Touhami AO Charof R Khedid K 《Canadian journal of microbiology》2012,58(2):145-150
Cereal products (soft and hard wheat) are a basic staple food in the Moroccan diet. A total of 60 samples of two types of wheat flours used for human consumption were collected; 30 samples among this collection were obtained from various households using Moroccan varieties of wheat produced in traditional flour mills. The rest of the samples were purchased from retail wheat flour sources in the Rabat and Sale city markets. Standard plate counts (SPC), total and faecal coliforms, Clostridium, Salmonella spp., Shigella spp., Staphylococcus aureus, Listeria monocytogenes, yeast, lactic acid bacteria, and molds, were carried out to assess the microbiological quality of wheat flour. Microbiological interpretation of the criteria was performed according to standards implemented by the Codex Alimentarius Commission. Most frequent counts, in traditional and industrial wheat flour, were total aerobic mesophilic bacteria with an average 4 × 104 and 2.5 × 104 cfu/g, respectively. The results showed higher coliform and fungi counts in house than in commercial samples. Pathogenic flora as Salmonella spp., Shigella spp., S. aureus, L. monocytogenes, and Clostridium were not detected in all investigated samples. Bacterial strains isolated from both flours belong to the following genera: Enterobacter spp., Serratia spp., Klebsiella spp., Pantoea spp., Leclercia spp., Proteus spp. The most frequent genus of the investigated isolates was Aspergillus (81 %). Microbial counts were lower than the limit laid down in the Codex Alimentarius, attributing to these flours a satisfactory microbiological quality. 相似文献
82.
83.
Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation 总被引:1,自引:0,他引:1 下载免费PDF全文
Essafi-Benkhadir K Onesto C Stebe E Moroni C Pagès G 《Molecular biology of the cell》2007,18(11):4648-4658
Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. 相似文献
84.
Maria-Armineh Tossounian Inge Van Molle Khadija Wahni Silke Jacques Kris Gevaert Frank Van Breusegem Didier Vertommen David Young Leonardo Astolfi Rosado Joris Messens 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(3):775-789
Background
Glutathione transferases play an important role as detoxifying enzymes. In A. thaliana, elevated levels of reactive oxygen species (ROS), provoked during biotic and abiotic stress, influence the activity of GSTU23. The aim of this study is to determine the impact of oxidative stress on the function and structure of GSTU23.Methods
The impact of oxidation on the function of GSTU23 was studied using a glutathione transferase biochemical assay and mass spectrometry. With kinetics, circular dichroism and thermodynamics, we compared reduced with oxidized GSTU23. X-ray crystal structures of GSTU23 visualize the impact of oxidation on methionines and cysteines.Results
In the presence of 100 μM H2O2, oxidation of the methionine side-chain to a sulfoxide is the prominent post-translational modification, which can be reduced by C. diphtheriae MsrA and MsrB. However, increasing the level to 200 μM H2O2 results in a reversible intramolecular disulfide between Cys65-Cys110, which is substrate for glutaredoxin. Under these oxidizing conditions, GSTU23 undergoes a structural change and forms a more favourable enzyme-substrate complex to overcome kcat decrease.Conclusions and significance
At lower H2O2 levels (100 μM), GSTU23 forms methionine sulfoxides. Specifically, oxidation of Met14, located near the catalytic Ser13, could interfere with both GSH binding and catalytic activation. At higher H2O2 levels (200 μM), the Cys65-Cys110 disulfide bond protects other cysteines and also methionines from overoxidation. This study shows the impact of oxidative stress on GSTU23 regulated by methionine sulfoxide reductases and glutaredoxin, and the mechanisms involved in maintaining its catalytic functionality under oxidizing conditions. 相似文献85.
Nishan S. Kalupahana Brynn H. Voy Arnold M. Saxton Naima Moustaid‐Moussa 《Obesity (Silver Spring, Md.)》2011,19(2):245-254
This study aimed at investigating whether the weight loss due to energy‐restricted high‐fat diets is accompanied with parallel improvements in metabolic markers and adipose tissue inflammation. Eight‐week‐old C57BL/6J mice were given free access to a low‐fat (LF) or a high‐fat (45% of energy from fat—HF) diet for 6 months. Restricting intake of the HF diet by 30% (HFR) during the last 2 months of the HF feeding trial decreased fasting plasma insulin, homeostasis model assessment of insulin resistance (HOMAIR), and plasma triglyceride levels and improved hepatic steatosis compared to ad libitum HF feeding, indicating an improved metabolic profile. Further, analysis of gonadal white adipose tissue (GWAT) gene expression by microarray and quantitative PCR analyses demonstrated that HFR downregulated expression of genes linked to cell and focal adhesion, cytokine‐cytokine receptor interaction, and endoplasmic reticulum (ER)–associated degradation pathway. However, HFR had no effect on circulating plasminogen activator inhibitor‐1 (PAI‐1) and nonesterified fatty acid levels, which were persistently higher in both HF and HFR groups compared to the LF group. Furthermore, HFR had a negative effect on plasma total adiponectin level. Finally, while HFR decreased GWAT monocyte chemotactic protein‐1 (MCP‐1), interleukin‐2 (IL‐2), and PAI‐1 levels, it did not affect several other cytokines including granulocyte‐macrophage colony‐stimulating factor, interferon‐γ, IL‐1β, IL‐6, and IL‐10. In summary, energy‐restricted high‐fat diets improve insulin sensitivity, while only partially improving markers of systemic and adipose tissue inflammation. In conclusion, our study supports the recommended low‐fat intake for overall cardiovascular health. 相似文献
86.
Koen Van Laer Lieven Buts Nicolas Foloppe Didier Vertommen Karolien Van Belle Khadija Wahni Goedele Roos Lennart Nilsson Luis M. Mateos Mamta Rawat Nico A. J. van Nuland Joris Messens 《Molecular microbiology》2012,86(4):787-804
To survive hostile conditions, the bacterial pathogen Mycobacterium tuberculosis produces millimolar concentrations of mycothiol as a redox buffer against oxidative stress. The reductases that couple the reducing power of mycothiol to redox active proteins in the cell are not known. We report a novel mycothiol‐dependent reductase (mycoredoxin‐1) with a CGYC catalytic motif. With mycoredoxin‐1 and mycothiol deletion strains of Mycobacterium smegmatis, we show that mycoredoxin‐1 and mycothiol are involved in the protection against oxidative stress. Mycoredoxin‐1 acts as an oxidoreductase exclusively linked to the mycothiol electron transfer pathway and it can reduce S‐mycothiolated mixed disulphides. Moreover, we solved the solution structures of oxidized and reduced mycoredoxin‐1, revealing a thioredoxin fold with a putative mycothiol‐binding site. With HSQC snapshots during electron transport, we visualize the reduction of oxidized mycoredoxin‐1 as a function of time and find that mycoredoxin‐1 gets S‐mycothiolated on its N‐terminal nucleophilic cysteine. Mycoredoxin‐1 has a redox potential of ?218 mV and hydrogen bonding with neighbouring residues lowers the pKa of its N‐terminal nucleophilic cysteine. Determination of the oxidized and reduced structures of mycoredoxin‐1, better understanding of mycothiol‐dependent reactions in general, will likely give new insights in how M. tuberculosis survives oxidative stress in human macrophages. 相似文献
87.
Chétiveaux M Nazih H Ferchaud-Roucher V Lambert G Zaïr Y Masson M Ouguerram K Bouhours D Krempf M 《Journal of lipid research》2002,43(11):1986-1993
The aim of the study was to assess the isolation of HDL by fast protein liquid chromatography (FPLC) to perform kinetics studies of apolipoprotein (apo)A-I-HDL labelled with a stable isotope. Comparison between FPLC and ultracentrifugation has been made. ApoA-I-HDL kinetics were studied by infusion of [5.5.5-(2)H(3)]leucine for 14 h in five subjects. Using FPLC, prebeta(1) HDL and alphaHDL (HDL(2) and HDL(3)) were separated from 200 microl of plasma samples. Total HDL was isolated by sequential ultracentrifugation (HDL-UC). The tracer-to-tracee ratio was higher in prebeta(1) HDL than in total HDL-UC. The higher leucine enrichment found in total HDL-UC compared to alphaHDL suggested the existence of a mixture of apoA-I-HDL sub-classes. From this difference in enrichments, the turnover rate of total HDL-UC, usually assumed to be alphaHDL, was probably overestimated in previous studies. To our knowledge, this study is the first report which provides a convenient tool to distinguish enrichments of apoA-I in prebeta(1) HDL and alphaHDL from total HDL previously used for kinetic measurements. This original and new method should help to understand the kinetics of HDL in humans and the reverse cholesterol transport dynamics. 相似文献
88.
Mohamed El Aalaoui Rachid Bouharroud Mohamed Sbaghi Mustapha El Bouhssini Lahoucine Hilali Khadija Dari 《Archives Of Phytopathology And Plant Protection》2019,52(1-2):155-169
The contact toxicity of various chemical and biological pesticides for the first and second instar nymphs and adults of the Opuntia cochineal scale insect Dactylopius opuntiae and the predator ladybird Cryptolaemus montrouzieri was determined under Morocco semi field conditions. d-limonene (60?g/l) at 100 and 150?cc/hl, mineral oil (780?g/l) at 2400?cc/hl and malathion (500?g/l) at 300?cc/hl caused the highest mortality (99–100%) among first instar nymphs of D. opuntiae 24?h after treatment. d-limonene (60?g/l) at 150?cc/hl caused greatest mortality (99%) in second instar nymphs. The highest mortality (99%) among adult female D. opuntiae was observed 120?h after treatment with d-limonene (60?g/l) at 150?cc/hl and mineral oil (780?g/l) at 2400?cc/hl. For the predator C. montrouzieri the highest mortality (92–97%) among adults 24?h after treatment was caused by malathion (500?g/l) at 100, 200 and 300?cc/hl and alpha-cypermethrin (100?g/l) at 75, 150 and 225?cc/hl. The most harmful pesticides to C. montrouzieri larvae 24?h after treatment were malathion and alpha-cypermethrin with mortality rates of 89–95%. Mortality in larvae ranged from 87 to 100% 120?h after treatment with chlorpyriphos-methyl (480?g/l) at 75, 150 and 225?cc/hl and spinosad (480?g/l) at 100, 200 and 300?cc/hl. d-limonene (60?g/l) at 50?cc/hl and mineral oil (780?g/l) at 1000?cc/hl had the least impact on C. montrouzieri adults and larvae, causing mortality of 11 and 15%, respectively, 120?h after treatment. d-limonene (60?g/l) and mineral oil (780?g/l) may therefore be viable alternatives to others high-risk chemical pesticides. These two biological insecticides are effective in controlling the Opuntia cochineal scale insect but have little adverse impact on the predator C. montrouzieri. 相似文献
89.
Robert P. Smith Aimee Doiron Rodrigo Muzquiz Marla C. Fortoul Meghan Haas Tom Abraham Rebecca J. Quinn Ivana Barraza Khadija Chowdhury Louis R. Nemzer 《Environmental microbiology》2019,21(11):4330-4342
When cooperation is critical for survival, cheating can lead to population collapse. One mechanism of cooperation that permits the coexistence of cooperators and cheaters is an impure public good, whose public benefits are shared, but with a private benefit retained by the cooperator. It has yet to be determined how the contributions of the public and private benefit affect population survival. Using simulations and experiments with β-lactamase-expressing bacteria, we found that for a given amount of public and private benefit, the population was most sensitive to collapse when initiated from an intermediate fraction of cooperators due to the near-concurrent collapse of the cooperator and cheater populations. We found that increasing the ratio of public to private benefit increased sensitivity to collapse. A low ratio allowed cooperators to survive on their private benefit after the public benefit could not rescue the cheaters. A high ratio allowed the cheaters to survive to high concentrations of ampicillin due to the high public benefit. However, small increases in ampicillin caused a rapid decline in the entire population as the private benefit was insufficient to allow self-rescue of the cooperators. Our findings have implications in the persistence of populations that rely on cooperation for survival. 相似文献
90.
Dler Faieeq Darweesh Mahmood Amna Abderrazak Dominique Couchie Oleg Lunov Vimala Diderot Tatiana Syrovets Mohamed‐Naceur Slimane Fabien Gosselet Thomas Simmet Mustapha Rouis Khadija El Hadri 《Journal of cellular physiology》2013,228(7):1577-1583
Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin‐1 (Trx‐1) is an oxidative stress‐limiting protein with anti‐inflammatory and anti‐apoptotic properties. In contrast, its truncated form (Trx‐80) exerts pro‐inflammatory effects. Here we analyzed whether Trx‐80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro‐inflammatory phenotype. Trx‐80 at 1 µg/ml significantly attenuated the polarization of anti‐inflammatory M2 macrophages induced by exposure to either IL‐4 at 15 ng/ml or IL‐4/IL‐13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL‐10. By contrast, in LPS‐challenged macrophages, Trx‐80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF‐α and MCP‐1. When Trx‐80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL‐4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx‐80. Moreover, the Trx‐80 treatment led to a significantly increased aortic lesion area. The ability of Trx‐80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. J. Cell. Physiol. 228: 1577–1583, 2013. © 2013 Wiley Periodicals, Inc. 相似文献