排序方式: 共有122条查询结果,搜索用时 12 毫秒
61.
Mathieu Tramoni Jerome Gilleron Khadija Tahiri Diane Carette Marie-Therese Corvol Dominique Segretain Georges Pointis Jean-Francois Savouret 《Biochimie》2009,91(11-12):1366-1375
The potential health impact of pharmaceutical waste is now a growing concern. Contraceptive steroids are prominent environmental contaminants and thus may act as endocrine disruptors. Numerous xenobiotics hamper Sertoli cells junctional communication which is known to participate in spermatogenesis control. This has been associated with male subfertility and testicular cancer. We investigated three contraceptive molecules found in the environment for their potential impact on Sertoli cells gap junction functionality: 17a-ethynylestradiol, medroxyprogesterone acetate and levonorgestrel. Four other non-steroid drugs also found in the environment were included in the study. Communication disruption was analyzed in vitro in murine seminiferous tubules and the 42GPA9 Sertoli cell line. Steroids modulated connexin43 trafficking and impaired junctional communication through rapid effects apparently acting on the cell membrane but not on Cx43 expression. The 4 non-steroid compounds showed no effect. Longer exposure to steroids increased gap junction impairment, which was associated in part with Na/K ATPase internalization. Estrogen receptors (ER) did not appear to be involved in gap junction disruption: Sertoli cells are devoid of ERα and only express the cytoplasmic β isoform. ERβ localization was not modified by either steroid. The threshold level was surprisingly low, around 10?16 M. We conclude that steroidal pollutants disrupt Sertoli cells junctional communication in vitro at concentrations that can be found in the environment. 相似文献
62.
Wnt5a participates in distal lung morphogenesis 总被引:11,自引:0,他引:11
Operational parallels in overall mechanisms of three-dimensional patterning of vertebrate organs are becoming increasingly apparent. Many key mediators, such as FGFs, BMPs, and sonic hedgehog, participate in organization of a number of organs, including the lungs, which exhibit a defined proximodistal (P-D) polarity. Recently, Wnt5a a member of the wingless family of signaling molecules involved in cell proliferation, differentiation, and organogenesis, was shown to underlie the outgrowth and P-D morphogenesis of the vertebrate limb. In the current study, we show that Wnt5a is expressed in the mouse lung and plays an important role in lung distal morphogenesis. Analysis of the mutant phenotype in mice carrying a targeted disruption of the Wnt5a locus shows distinct abnormalities in distal lung morphogenesis as manifested by distinct truncation of the trachea and overexpansion of the distal respiratory airways. In the face of deleted WNT5a activity, both epithelial and mesenchymal cell compartments of the Wnt5a(-/-) lungs exhibit increased cell proliferation. The overall architecture of the mutant lungs is characterized by overexpansion of the distal airways and inhibition of lung maturation as reflected by persistence of thickened intersaccular interstitium. Absence of WNT5a activity in the mutant lungs leads to increased expression of Fgf-10, Bmp4, Shh, and its receptor Ptc, raising the possibility that WNT5a, FGF-10, BMP4, and SHH signaling pathways are functionally interactive. 相似文献
63.
Ulrike Fillinger Khadija Kannady George William Michael J Vanek Stefan Dongus Dickson Nyika Yvonne Geissbühler Prosper P Chaki Nico J Govella Evan M Mathenge Burton H Singer Hassan Mshinda Steven W Lindsay Marcel Tanner Deo Mtasiwa Marcia C de Castro Gerry F Killeen 《Malaria journal》2008,7(1):1-25
Background
As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed.Methods
A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards.Results
The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6–37.6%; p = 0.04).Conclusion
This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience. 相似文献64.
Koen Van Laer Margarida Oliveira Khadija Wahni Joris Messens 《Protein science : a publication of the Protein Society》2014,23(2):238-242
NrdH‐redoxins shuffle electrons from the NADPH pool in the cell to Class Ib ribonucleotide reductases, which in turn provide the precursors for DNA replication and repair. NrdH‐redoxins have a CVQC active site motif and belong to the thioredoxin‐fold protein family. As for other thioredoxin‐fold proteins, the pKa of the nucleophilic cysteine of NrdH‐redoxins is of particular interest since it affects the catalytic reaction rate of the enzymes. Recently, the pKa value of this cysteine in Corynebacterium glutamicum and Mycobacterium tuberculosis NrdH‐redoxins were determined, but structural insights explaining the relatively low pKa remained elusive. We subjected C. glutamicum NrdH‐redoxin to an extensive molecular dynamics simulation to expose the factors regulating the pKa of the nucleophilic cysteine. We found that the nucleophilic cysteine receives three hydrogen bonds from residues within the CVQC active site motif. Additionally, a fourth hydrogen bond with a lysine located N‐terminal of the active site further lowers the cysteine pKa. However, site‐directed mutagenesis data show that the major contribution to the lowering of the cysteine pKa comes from the positive charge of the lysine and not from the additional Lys‐Cys hydrogen bond. In 12% of the NrdH‐redoxin family, this lysine is replaced by an arginine that also lowers the cysteine pKa. All together, the four hydrogen bonds and the electrostatic effect of a lysine or an arginine located N‐terminally of the active site dynamically regulate the pKa of the nucleophilic cysteine in NrdH‐redoxins. 相似文献
65.
The conserved active site proline determines the reducing power of Staphylococcus aureus thioredoxin
Roos G Garcia-Pino A Van Belle K Brosens E Wahni K Vandenbussche G Wyns L Loris R Messens J 《Journal of molecular biology》2007,368(3):800-811
Nature uses thioredoxin-like folds in several disulfide bond oxidoreductases. Each of them has a typical active site Cys-X-X-Cys sequence motif, the hallmark of thioredoxin being Trp-Cys-Gly-Pro-Cys. The intriguing role of the highly conserved proline in the ubiquitous reducing agent thioredoxin was studied by site-specific mutagenesis of Staphylococcus aureus thioredoxin (Sa_Trx). We present X-ray structures, redox potential, pK(a), steady-state kinetic parameters, and thermodynamic stabilities. By replacing the central proline to a threonine/serine, no extra hydrogen bonds with the sulphur of the nucleophilic cysteine are introduced. The only structural difference is that the immediate chemical surrounding of the nucleophilic cysteine becomes more hydrophilic. The pK(a) value of the nucleophilic cysteine decreases with approximately one pH unit and its redox potential increases with 30 mV. Thioredoxin becomes more oxidizing and the efficiency to catalyse substrate reduction (k(cat)/K(M)) decreases sevenfold relative to wild-type Sa_Trx. The oxidized form of wild-type Sa_Trx is far more stable than the reduced form over the whole temperature range. The driving force to reduce substrate proteins is the relative stability of the oxidized versus the reduced form Delta(T(1/2))(ox/red). This driving force is decreased in the Sa_Trx P31T mutant. Delta(T(1/2))(ox/red) drops from 15.5 degrees C (wild-type) to 5.8 degrees C (P31T mutant). In conclusion, the active site proline in thioredoxin determines the driving potential for substrate reduction. 相似文献
66.
Rab35 and its GAP EPI64C in T cells regulate receptor recycling and immunological synapse formation 总被引:1,自引:0,他引:1
Patino-Lopez G Dong X Ben-Aissa K Bernot KM Itoh T Fukuda M Kruhlak MJ Samelson LE Shaw S 《The Journal of biological chemistry》2008,283(26):18323-18330
Upon antigen recognition, T-cell receptor (TCR/CD3) and other signaling molecules become enriched in a specialized contact site between the T cell and antigen-presenting cell, i.e. the immunological synapse (IS). Enrichment occurs via mechanisms that include polarized secretion from recycling endosomes, but the Rabs and RabGAPs that regulate this are unknown. EPI64C (TBC1D10C) is an uncharacterized candidate RabGAP we identified by mass spectrometry as abundant in human peripheral blood T cells that is preferentially expressed in hematopoietic cells. EPI64C is a Rab35-GAP based both on in vitro Rab35-specific GAP activity and findings in transfection assays. EPI64C and Rab35 dominant negative (DN) constructs each impaired transferrin export from a recycling pathway in Jurkat T-cells and induced large vacuoles marked by transferrin receptor, TCR, and SNAREs implicated in TCR-polarized secretion. Rab35 localized to the plasma membrane and to intracellular vesicles where it substantially colocalized with TfR and with TCR. Rab35 was strongly recruited to the IS. Conjugate formation was impaired by transfection with Rab35-DN or EPI64C and by EPI64C knock down. TCR enrichment at the IS was impaired by Rab35-DN. Thus, EPI64C and Rab35 regulate a recycling pathway in T cells and contribute to IS formation, most likely by participating in TCR transport to the IS. 相似文献
67.
Zacharia Mtema Joel Changalucha Sarah Cleaveland Martin Elias Heather M. Ferguson Jo E. B. Halliday Daniel T. Haydon Gurdeep Jaswant Rudovick Kazwala Gerry F. Killeen Tiziana Lembo Kennedy Lushasi Alpha D. Malishee Rebecca Mancy Matthew Maziku Eberhard M. Mbunda Geofrey J. M. Mchau Roderick Murray-Smith Kristyna Rysava Khadija Said Maganga Sambo Elizabeth Shayo Lwitiko Sikana Sunny E Townsend Honorathy Urassa Katie Hampson 《PLoS medicine》2016,13(4)
68.
Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelopmental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex. 相似文献
69.
Allison J. Greaney Rachel T. Eguia Tyler N. Starr Khadija Khan Nicholas Franko Jennifer K. Logue Sandra M. Lord Cate Speake Helen Y. Chu Alex Sigal Jesse D. Bloom 《PLoS pathogens》2022,18(6)
Exposure histories to SARS-CoV-2 variants and vaccinations will shape the specificity of antibody responses. To understand the specificity of Delta-elicited antibody immunity, we characterize the polyclonal antibody response elicited by primary or mRNA vaccine-breakthrough Delta infections. Both types of infection elicit a neutralizing antibody response focused heavily on the receptor-binding domain (RBD). We use deep mutational scanning to show that mutations to the RBD’s class 1 and class 2 epitopes, including sites 417, 478, and 484–486 often reduce binding of these Delta-elicited antibodies. The anti-Delta antibody response is more similar to that elicited by early 2020 viruses than the Beta variant, with mutations to the class 1 and 2, but not class 3 epitopes, having the largest effects on polyclonal antibody binding. In addition, mutations to the class 1 epitope (e.g., K417N) tend to have larger effects on antibody binding and neutralization in the Delta spike than in the D614G spike, both for vaccine- and Delta-infection-elicited antibodies. These results help elucidate how the antigenic impacts of SARS-CoV-2 mutations depend on exposure history. 相似文献
70.
Aja S Landree LE Kleman AM Medghalchi SM Vadlamudi A McFadden JM Aplasca A Hyun J Plummer E Daniels K Kemm M Townsend CA Thupari JN Kuhajda FP Moran TH Ronnett GV 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,294(2):R352-R361
Inhibition of brain carnitine palmitoyl-transferase-1 (CPT-1) is reported to decrease food intake and body weight in rats. Yet, the fatty acid synthase (FAS) inhibitor and CPT-1 stimulator C75 produces hypophagia and weight loss when given to rodents intracerebroventricularly (icv). Thus roles and relative contributions of altered brain CPT-1 activity and fatty acid oxidation in these phenomena remain unclarified. We administered compounds that target FAS or CPT-1 to mice by single icv bolus and examined acute and prolonged effects on feeding and body weight. C75 decreased food intake rapidly and potently at all doses (1-56 nmol) and dose dependently inhibited intake on day 1. Dose-dependent weight loss on day 1 persisted through 4 days of postinjection monitoring. The FAS inhibitor cerulenin produced dose-dependent (560 nmol) hypophagia for 1 day, weight loss for 2 days, and weight regain to vehicle control by day 3. The CPT-1 inhibitor etomoxir (32, 320 nmol) did not alter overall day 1 feeding. However, etomoxir attenuated the hypophagia produced by C75, indicating that CPT-1 stimulation is important for C75's effect. A novel compound, C89b, was characterized in vitro as a selective stimulator of CPT-1 that does not affect fatty acid synthesis. C89b (100, 320 nmol) decreased feeding in mice for 3 days and produced persistent weight loss for 6 days without producing conditioned taste aversion. Similarly, intraperitoneal administration decreased feeding and body weight without producing conditioned taste aversion. These results suggest a role for brain CPT-1 in the regulation of energy balance and implicate CPT-1 stimulation as a pharmacological approach to weight loss. 相似文献