首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   7篇
  2023年   3篇
  2022年   8篇
  2021年   11篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   12篇
  2014年   13篇
  2013年   14篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   10篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   5篇
  1999年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1982年   1篇
  1932年   1篇
排序方式: 共有153条查询结果,搜索用时 46 毫秒
61.
Mutations in Proprotein Convertase Subtilisin Kexin 9 (PCSK9) have been associated with autosomal dominant hypercholesterolemia. In vivo kinetic studies indicate that LDL catabolism was impaired and apolipoprotein B (apoB)-containing lipoprotein synthesis was enhanced in two patients presenting with the S127R mutation on PCSK9. To understand the physiological role of PCSK9, we overexpressed human PCSK9 in mouse and cellular models as well as attenuated the endogenous expression of PCSK9 in HuH7 hepatoma cells using RNA interference. Here, we show that PCSK9 dramatically impairs the expression of the low density lipoprotein receptor (LDLr) and, in turn, LDL cellular binding as well as LDL clearance from the plasma compartment in C57BL6/J mice but not in LDLr-deficient mice, establishing a definitive role for PCSK9 in the modulation of the LDLr metabolic pathway. In contrast to data obtained in S127R-PCSK9 patients presenting with increased apoB production, our study indicates that wild-type PCSK9 does not significantly alter the production and/or secretion of VLDL apoB in either cultured cells or mice. Finally, we show that unlike PCSK9 overexpression in mice, the S127R mutation in patients led to increased VLDL apoB levels, suggesting a potential gain of function for S127R-PCSK9 in humans.  相似文献   
62.
63.
64.
65.
The potential health impact of pharmaceutical waste is now a growing concern. Contraceptive steroids are prominent environmental contaminants and thus may act as endocrine disruptors. Numerous xenobiotics hamper Sertoli cells junctional communication which is known to participate in spermatogenesis control. This has been associated with male subfertility and testicular cancer. We investigated three contraceptive molecules found in the environment for their potential impact on Sertoli cells gap junction functionality: 17a-ethynylestradiol, medroxyprogesterone acetate and levonorgestrel. Four other non-steroid drugs also found in the environment were included in the study. Communication disruption was analyzed in vitro in murine seminiferous tubules and the 42GPA9 Sertoli cell line. Steroids modulated connexin43 trafficking and impaired junctional communication through rapid effects apparently acting on the cell membrane but not on Cx43 expression. The 4 non-steroid compounds showed no effect. Longer exposure to steroids increased gap junction impairment, which was associated in part with Na/K ATPase internalization. Estrogen receptors (ER) did not appear to be involved in gap junction disruption: Sertoli cells are devoid of ERα and only express the cytoplasmic β isoform. ERβ localization was not modified by either steroid. The threshold level was surprisingly low, around 10?16 M. We conclude that steroidal pollutants disrupt Sertoli cells junctional communication in vitro at concentrations that can be found in the environment.  相似文献   
66.
67.
NrdH‐redoxins shuffle electrons from the NADPH pool in the cell to Class Ib ribonucleotide reductases, which in turn provide the precursors for DNA replication and repair. NrdH‐redoxins have a CVQC active site motif and belong to the thioredoxin‐fold protein family. As for other thioredoxin‐fold proteins, the pKa of the nucleophilic cysteine of NrdH‐redoxins is of particular interest since it affects the catalytic reaction rate of the enzymes. Recently, the pKa value of this cysteine in Corynebacterium glutamicum and Mycobacterium tuberculosis NrdH‐redoxins were determined, but structural insights explaining the relatively low pKa remained elusive. We subjected C. glutamicum NrdH‐redoxin to an extensive molecular dynamics simulation to expose the factors regulating the pKa of the nucleophilic cysteine. We found that the nucleophilic cysteine receives three hydrogen bonds from residues within the CVQC active site motif. Additionally, a fourth hydrogen bond with a lysine located N‐terminal of the active site further lowers the cysteine pKa. However, site‐directed mutagenesis data show that the major contribution to the lowering of the cysteine pKa comes from the positive charge of the lysine and not from the additional Lys‐Cys hydrogen bond. In 12% of the NrdH‐redoxin family, this lysine is replaced by an arginine that also lowers the cysteine pKa. All together, the four hydrogen bonds and the electrostatic effect of a lysine or an arginine located N‐terminally of the active site dynamically regulate the pKa of the nucleophilic cysteine in NrdH‐redoxins.  相似文献   
68.
To investigate the salt tolerance mechanisms, Aeluropus lagopoides as a halophytic plant was used. Plants were treated with 0, 150, 450, 600, and 750 mM NaCl and harvested at 0, 4, 8, and 10 days after treatment and 1 day and 1 week after recovery. Optimal growth, measured as fresh and dry weights, occurred at 150 mM NaCl, but it was suppressed by 450, 600, and 750 mM NaCl. Recovery significantly increased fresh and dry weights only in 750 mM NaCl-treated plants. Water content was decreased after NaCl treatment and increased after recovery. Na+ and proline contents and activity of superoxide dismutase (SOD) were increased after NaCl treatment and decreased after recovery in all treated plants. In contrast, K+ content and ascorbate peroxidase activity decreased after NaCl treatment and increased after recovery in all treated plants. Catalase (CAT) was activated only in 750 mM NaCl-treated plants. Total content of soluble protein was slightly changed after NaCl treatment. It was concluded that proline accumulation for osmotic adjustment, SOD activation for O2·− scavenging, and CAT activation at the higher level of salt stress to detoxify produced H2O2 were main A. lagopoides strategies under salt stress. A. lagopoides salt tolerance was not based on the restriction of Na+ uptake.  相似文献   
69.
Mutations in the LMNA gene encoding lamins A/C are responsible for more than ten different disorders called laminopathies which affect various tissues in an isolated (striated muscle, adipose tissue or peripheral nerve) or systemic (premature aging syndromes) fashion. Overlapping phenotypes are also observed. Associated with this wide clinical variability, there is also a large genetic heterogeneity, with 408 different mutations being reported to date. Whereas a few hotspot mutations emerge for some types of laminopathies, relationships between genotypes and phenotypes remain poor for laminopathies affecting the striated muscles. In addition, there is important intrafamilial variability, explained only in a few cases by digenism, thus suggesting an additional contribution from modifier genes. In this regard, a chromosomal region linked to the variability in the age at onset of myopathic symptoms in striated muscle laminopathies has recently been identified. This locus is currently under investigation to identify modifier variants responsible for this variability.  相似文献   
70.
Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat)/K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号