首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2010年   5篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2002年   3篇
  2000年   2篇
  1995年   1篇
  1994年   1篇
  1983年   1篇
  1980年   1篇
  1977年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
31.
32.
The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S ribosomal RNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factor Tu (EF-Tu) and elongation factor G (EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation.  相似文献   
33.
34.
Prashant Khade 《FEBS letters》2010,584(2):420-7472
Recent X-ray crystal structures of the ribosome have revolutionized the field by providing a much-needed structural framework to understand ribosome function. Indeed, the crystal structures rationalize much of the genetic and biochemical data that have been meticulously gathered over 50 years. Here, we focus on the interactions between tRNAs and the ribosome and describe some of the insights that the structures provide about the mechanism of translation. Both high-resolution structures and functional studies are essential for fully appreciating the complex process of protein synthesis.  相似文献   
35.
Acid mine drainage (AMD) continues to threaten water quality in many mining regions globally. Data paucity renders it challenging to inform appropriate water quality management strategies for a succinct scientific understanding of the effects of AMD on freshwater ecosystems. The current study investigated the effects of AMD collected from a defunct coalmine in Mpumalanga, South Africa, on freshwater ecosystems using a risk-based approach on five indigenous species, Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata and Oreochromis mossambicus in 2016. Species responded differently to AMD after 96 hours and 240 hours of exposure in static experimental test designs. Burnupia stenochorias was more sensitive to AMD after 96 and 240 hours of exposure, whereas O. mossambicus was tolerant during short-term exposure, but became more sensitive after 240 hours of exposure than the other species tested. The availability of metals in AMD was directly associated with dilution rate. Scenario-specific water quality guidelines for AMD have been derived as 0.122% for short-term and 0.014% for long-term exposure. These may form important indicative dilutions for other AMDs that do not match the scenarios of this study. The toxicity of AMD to a wide range of aquatic species, including field validations, requires further investigation.  相似文献   
36.

Background

Malaria is a major public health problem in Cameroon. Unlike in the southern forested areas where the epidemiology of malaria has been better studied prior to the implementation of control activities, little is known about the distribution and role of anophelines in malaria transmission in the coastal areas.

Methods

A 12-month longitudinal entomological survey was conducted in Tiko, Limbe and Idenau from August 2001 to July 2002. Mosquitoes captured indoors on human volunteers were identified morphologically. Species of the Anopheles gambiae complex were identified using the polymerase chain reaction (PCR). Mosquito infectivity was detected by the enzyme-linked immunosorbent assay and PCR. Malariometric indices (plasmodic index, gametocytic index, parasite species prevalence) were determined in three age groups (<5 yrs, 5–15 yrs, >15 yrs) and followed-up once every three months.

Results

In all, 2,773 malaria vectors comprising Anopheles gambiae (78.2%), Anopheles funestus (17.4%) and Anopheles nili (7.4%) were captured. Anopheles melas was not anthropophagic. Anopheles gambiae had the highest infection rates. There were 287, 160 and 149 infective bites/person/year in Tiko, Limbe and Idenau, respectively. Anopheles gambiae accounted for 72.7%, An. funestus for 23% and An. nili for 4.3% of the transmission. The prevalence of malaria parasitaemia was 41.5% in children <5 years of age, 31.5% in those 5–15 years and 10.5% in those >15 years, and Plasmodium falciparum was the predominant parasite species.

Conclusion

Malaria transmission is perennial, rainfall dependent and An. melas does not contribute to transmission. These findings are important in the planning and implementation of malaria control activities in coastal Cameroon and West Africa.
  相似文献   
37.
38.
Synthesis, photochemistry, and biomolecular caging properties of a new chromophore namely 3-nitro-2-naphthalenemethanol are described. This chromophore is photoexcitable with photons in 350-400 nm range and in several solvents including aqueous medium. On irradiation, it gives the expected nitroso-aldehyde photoproduct with high quantum yield (0.6-0.8). Further, it can be conveniently coupled to the amino residues of immunoglobulin (IgG) using diphosgene. Irradiation of the resulting IgG-nitronaphthyl chromophore bioconjugate at 380 nm causes photorelease of IgG as evidenced by Protein-A affinity binding studies. The bioconjugate showed low level of binding to Protein-A. However, the binding increases after irradiation and, thus, modifies the Fc site of the IgG. Electrophoresis studies of the irradiated bioconjugate show that IgG does not undergo fragmentation or molecular weight change under the irradiation conditions. Thus, 3-nitro-2-naphthalenemethanol can be used as a photocaging agent under physiological conditions at wavelengths, which does not cause significant damage to the biomolecule. The work provides new directions for the development of organic chromophores for biomolecular caging applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号