首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   15篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   9篇
  2017年   5篇
  2016年   7篇
  2015年   9篇
  2014年   9篇
  2013年   7篇
  2012年   19篇
  2011年   8篇
  2010年   7篇
  2009年   11篇
  2008年   5篇
  2007年   6篇
  2006年   7篇
  2005年   8篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1983年   3篇
  1981年   1篇
  1979年   1篇
  1971年   2篇
排序方式: 共有156条查询结果,搜索用时 406 毫秒
101.
Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens—Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum—secrete small pH‐affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC‐dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non‐preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high‐carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host‐dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization.  相似文献   
102.
By reaction of 1,2-diaminocyclohexane with the 2,3-butanedione monoxime in the presence of ZnCl2, a new Schiff base complex was obtained. This complex was characterized by elemental analyses, FT-IR, 1H NMR, UV–Vis, and conductivity measurements. The reactivity of this complex to human serum albumin (HSA) under simulative physiological conditions was studied by spectroscopic and molecular docking analysis. Experimental results at various temperatures indicated that the intrinsic fluorescence of protein was quenched through a static quenching mechanism. The negative value of enthalpy change and positive value of entropy change indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of Zn(II) complex to HSA. FT-IR, three-dimensional fluorescence, and UV–Vis absorption results showed that the secondary structure of HSA changed after Zn(II) complex bound to protein. The binding distance was calculated to be 4.96 nm, according to fluorescence resonance energy transfer. Molecular docking results confirmed the spectroscopic results and showed that above complex is embedded into subdomain IIA of protein. All these experimental and computational results clarified that Zn(II) complex could bind with HSA effectively, which could be a useful guideline for efficient Schiff-base drug design.  相似文献   
103.
Diatoms are one of the key phytoplankton groups in the ocean, forming vast oceanic blooms and playing a significant part in global primary production. To shed light on the role of redox metabolism in diatom's acclimation to light–dark transition and its interplay with cell fate regulation, we generated transgenic lines of the diatom Thalassiosira pseudonana that express the redox‐sensitive green fluorescent protein targeted to various subcellular organelles. We detected organelle‐specific redox patterns in response to oxidative stress, indicating compartmentalized antioxidant capacities. Monitoring the GSH redox potential (EGSH) in the chloroplast over diurnal cycles revealed distinct rhythmic patterns. Intriguingly, in the dark, cells exhibited reduced basal chloroplast EGSH but higher sensitivity to oxidative stress than cells in the light. This dark‐dependent sensitivity to oxidative stress was a result of a depleted pool of reduced glutathione which accumulated during the light period. Interestingly, reduction in the chloroplast EGSH was observed in the light phase prior to the transition to darkness, suggesting an anticipatory phase. Rapid chloroplast EGSH re‐oxidation was observed upon re‐illumination, signifying an induction of an oxidative signaling during transition to light that may regulate downstream metabolic processes. Since light–dark transitions can dictate metabolic capabilities and susceptibility to a range of environmental stress conditions, deepening our understanding of the molecular components mediating the light‐dependent redox signals may provide novel insights into cell fate regulation and its impact on oceanic bloom successions.  相似文献   
104.
105.
Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3 min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency‐specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.  相似文献   
106.
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with β-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme—β-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for β-ODAP production in vivo. The identification of BOS may pave the way toward engineering β-ODAP–free grass pea cultivars, which are safe for human and animal consumption.  相似文献   
107.
Burbot Lota lota L. is one of the endangered freshwater fish species in western Europe for which the development of controlled larval rearing procedures could produce enough material for stock enhancement. The suitability of the freshwater rotifer Brachionus calyciflorus as a start food for larviculture of burbot was investigated. After yolk‐absorption, the larvae were stocked in 40‐L tanks under different feeding conditions: clear water rearing conditions with rotifers (Brachionus calyciflorus) for 10 days (R), green water conditions (Chlorella sp.) with rotifers offered for 10 days (MALR), green water conditions (Chlorella sp.) for 3 days followed by clear water in combination with rotifer feeding for 7 days (AL3R), and clear water conditions with Artemia nauplii offered for 10 days (Art). After the 10‐day feeding, all groups received Artemia nauplii up to 35 days post‐hatching. Larval survival was counted at day 10 and at the end of the 35‐day rearing experiment. At day 35, a significant survival difference was noted between the groups where rotifers were supplemented with algae vs only Artemia. At the end of the experiment, the highest survival rate (69.20%) was obtained with larvae receiving only algae in the first 3 days of feeding. Lowest survival rate (24.90%) was obtained with larvae receiving only Artemia for 35 days. This indicates that smaller prey are essential for burbot at first feeding. Larval length and wet weight were measured at the time of mouth opening, at days 7, 10, and 21, and at the end of the experiment (day 35). On day 35, mean length of the larvae varied significantly between the treatments. However, the final wet weight of the larvae did not vary significantly between the treatments.  相似文献   
108.
Several derivatives of 6-amino-4-aryl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles were synthesized via Biginelli type reaction and tested for their anti-proliferative activity on human breast cancer (MCF-7) and human colon carcinoma (HT29) cell lines. Malignant and non-malignant cells were cultivated in RPMI medium and incubated with different concentrations of these pyrimidines. Cell viability was evaluated by MTT assay. Apoptotic cells were determined using DAPI (4'-6-diamidino-2-phenylindole) and propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak). 6-Amino-4-(4-chlorophenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile and 6-amino-4-[4-dimethylamino)phenyl]-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile decreased the viability of MCF-7 and HT29 cells, in contrast to L929 cells. These compounds induced a sub-G1 peak inflow cytometry histograms of treated cells indicating that apoptosis is involved in their toxicity.  相似文献   
109.
Improved antimicrobial peptides based on acyl-lysine oligomers   总被引:1,自引:0,他引:1  
We describe peptidomimetic oligomers that show rapid, nonhemolytic, broad-spectrum bactericidal properties in mice and do not induce the emergence of resistance. The oligomers contain acyl chains, which prevent the formation of stable secondary structure. This design appears advantageous over conventional antimicrobial peptides with respect to in vivo efficacy and safety, and may provide a convenient platform for the development of peptide antibiotics.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号