首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   9篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   24篇
  2018年   7篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
11.
12.
13.
14.
The discovery of porphyric insecticides was a direct fallout of the discovery and development of photodynamic herbicides. Tetrapyrrole-dependent photodynamic herbicides are compounds that force green plants to accumulate undesirable amounts of metabolic intermediates of the chlorophyll and heme metabolic pathways, namely, tetrapyrroles. In light, the accumulated tetrapyrroles photosensitize the formation of singlet oxygen that kills treated plants by oxidation of their cellular membranes. Demonstration of the potential for tetrapyrrole accumulation in insects was achieved by spraying T. ni larvae with δ-aminolevulinic acid (ALA) and 2,2-dipyridyl (Dpy). Treated larvae were placed overnight in darkness at 28°C in order to allow for tetrapyrrole accumulation. Extraction of treated, dark-incubated larvae with ammoniacal acetone, followed by spectrofluorometric examination of the larval extract, revealed the accumulation of massive amounts of protoporphyrin IX (Proto). A high degree of correlation was observed between Proto accumulation in darkness and larval death in the light. A few hours after exposure to light, the larvae became sluggish and flaccid due to loss of body fluids. Death was accompanied by extensive desiccation. Because control of insects by ingestion is as viable an option as control by spraying, and offers certain advantages under household conditions, studies were conducted to determine whether combinations of ALA and porphyric insecticide modulators would be effective if ingested with the food. The effect of ALA and 1,10-phenanthroline (Oph) were determined by incorporating them into the diet of T. ni larvae. After exposure to light, following 17 h of dark incubation, larvae underwent violent convulsions and vomiting and died within 20 to 40 s. Tetrapyrrole analysis of the treated larvae immediately after dark incubation revealed significant amounts of Proto and Zn-Proto accumulation. Correlation between tetrapyrrole accumulation and larval death was significant. Similar results were obtained when ALA and Dpy were administered to the larvae with the diet. The above results indicated that in addition to contact via spraying, porphyric insecticides had the potential to be very potent when ingested. For a more thorough understanding of the mode of action of porphyric insecticides, the phenomenology of tissue, cellular, and subcellular sites of tetrapyrrole accumulation in representative insect species was investigated. In T. ni larvae, on a unit protein basis, about 59% of the accumulated Proto was observed in the hemolymph, 35% in the gut, and 6% in the integument. Further understanding of the response of insect organs and tissues to porphyric insecticide treatment was obtained by investigating the response of isolated organs and tissues to incubation with ALA + Dpy or ALA + Oph in adult Blattella germanica (German cockroach), adult Anthonomus grandis (cotton boll weevil), fifth instar larvae of Heliothus zea (corn earworm), and fifth instar larvae of T. ni (cabbage looper). In T. ni, and H. zea, significant Proto accumulation was observed in incubated midgut and fat bodies. Proto accumulation occurred when tissues were incubated with Dpy, ALA + Dpy, Oph, and ALA + Oph (2). No response to treatment with ALA alone was observed. In cockroaches, more of the Proto appeared to accumulate in the male and female guts than in their abdomen. As in T. ni and H. zea, the response was elicited by each of the treatments that included Dpy or Oph. Cotton boll weevil abdomens appeared to be less responsive than the abdomens of the other three species. To determine whether Proto accumulation resulted in photodynamic damage of incubated tissues, T. ni midguts were incubated in darkness either in buffer, with ALA, or with Oph + ALA. Oxygen consumption of the tissue was monitored before and after exposure to 2-h of illumination. A 30% decrease in O2 consumption was observed in midguts treated with Oph or with ALA + Oph after 2 h in the light. The decrease in oxygen consumption observed in isolated T. ni midguts was shown to be caused by photodynamic damage to mitochondrial enzymes. Finally, structure-function photodynamic insecticidal studies led to the identification of 36 compounds belonging to 10 different chemical families that were effective (>70% mortality) against at least one insect species. Of the 36 modulators, 10 exhibited potent activity toward cockroaches.  相似文献   
15.
16.
17.
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). Despite introducing multiple immunomodulatory approaches for MS, there are still major concerns about possible ways for improving remyelination in this disease. Microglia exert essential roles in regulation of myelination processes, and interaction between colony-stimulating factor 1 (CSF1) with its receptor CSF1R is considered as a key regulator of microglial differentiation and survival. The aim of this study was to investigate possible roles for a CSF1R inhibitor PLX3397 in recovery of central myelination processes. Chronic demyelination was induced in mice by addition of 0.2% cuprizone to the chow for 12 weeks. Next, animals were undergoing a diet containing 290 mg/kg PLX3397 to induce microglial ablation. The PLX3397 treatment caused a significant decrease in the rate of expression for the CSF1/CSF1R axis, and a reduction in the protein expressions for the microglial marker Iba-1 and for the oligodendrocyte marker Olig-2. Findings from Luxol fast blue (LFB) staining and transmission electron microscopy (TEM) showed an increase in the rate of myelination for the mice receiving PLX3397. The rate of destruction in the nerve fibers and the extent of the gaps formed between layers of myelin sheaths was also reduced after the treatment with PLX3397. In addition, animals experienced an improvement in recovery of motor deficit after receiving PLX3397 (for all P < 0.05). It could be concluded that PLX3397 could retain myelination in the MS model possibly through regulation of the myelin environment.  相似文献   
18.
Cancer is the second cause of death worldwide. Chemotherapy and radiotherapy are the most common modalities for the treatment of cancer. Experimental studies have shown that inflammation plays a central role in tumor resistance and the incidence of several side effects following both chemotherapy and radiotherapy. Inflammation resulting from radiotherapy and chemotherapy is responsible for adverse events such as dermatitis, mucositis, pneumonitis, fibrosis, and bone marrow toxicity. Chronic inflammation may also lead to the development of second cancer during years after treatment. A number of anti-inflammatory drugs such as nonsteroidal anti-inflammatory agents have been proposed to alleviate chronic inflammatory reactions after radiotherapy or chemotherapy. Curcumin is a well-documented herbal anti-inflammatory agents. Studies have proposed that curcumin can help management of inflammation during and after radiotherapy and chemotherapy. Curcumin targets various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor κB (NF-κB), thereby attenuating the release of proinflammatory and profibrotic cytokines, and suppressing chronic production of free radicals, which culminates in the amelioration of tissue toxicity. Through modulation of NF-κB and its downstream signaling cascade, curcumin can also reduce angiogenesis, tumor growth, and metastasis. Low toxicity of curcumin is linked to its cytoprotective effects in normal tissues. This protective action along with the capacity of this phytochemical to sensitize tumor cells to radiotherapy and chemotherapy makes it a potential candidate for use as an adjuvant in cancer therapy. There is also evidence from clinical trials suggesting the potential utility of curcumin for acute inflammatory reactions during radiotherapy such as dermatitis and mucositis.  相似文献   
19.
Cyclooxygenase-2 (COX-2) is frequently expressed in many types of cancers exerting a pleiotropic and multifaceted role in genesis or promotion of carcinogenesis and cancer cell resistance to chemo- and radiotherapy. COX-2 is released by cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and cancer cells to the tumor microenvironment (TME). COX-2 induces cancer stem cell (CSC)-like activity, and promotes apoptotic resistance, proliferation, angiogenesis, inflammation, invasion, and metastasis of cancer cells. COX-2 mediated hypoxia within the TME along with its positive interactions with YAP1 and antiapoptotic mediators are all in favor of cancer cell resistance to chemotherapeutic drugs. COX-2 exerts most of the functions through its metabolite prostaglandin E2. In some and limited situations, COX-2 may act as an antitumor enzyme. Multiple signals are contributed to the functions of COX-2 on cancer cells or its regulation. Members of mitogen-activated protein kinase (MAPK) family, epidermal growth factor receptor (EGFR), and nuclear factor-κβ are main upstream modulators for COX-2 in cancer cells. COX-2 also has interactions with a number of hormones within the body. Inhibition of COX-2 provides a high possibility to exert therapeutic outcomes in cancer. Administration of COX-2 inhibitors in a preoperative setting could reduce the risk of metastasis in cancer patients. COX-2 inhibition also sensitizes cancer cells to treatments like radio- and chemotherapy. Chemotherapeutic agents adversely induce COX-2 activity. Therefore, choosing an appropriate chemotherapy drugs along with adjustment of the type and does for COX-2 inhibitors based on the type of cancer would be an effective adjuvant strategy for targeting cancer.  相似文献   
20.
Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号