首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7060篇
  免费   733篇
  国内免费   1145篇
  2024年   26篇
  2023年   106篇
  2022年   218篇
  2021年   394篇
  2020年   290篇
  2019年   376篇
  2018年   356篇
  2017年   281篇
  2016年   307篇
  2015年   451篇
  2014年   539篇
  2013年   589篇
  2012年   669篇
  2011年   585篇
  2010年   424篇
  2009年   355篇
  2008年   417篇
  2007年   370篇
  2006年   319篇
  2005年   307篇
  2004年   280篇
  2003年   264篇
  2002年   249篇
  2001年   142篇
  2000年   134篇
  1999年   110篇
  1998年   73篇
  1997年   77篇
  1996年   57篇
  1995年   41篇
  1994年   40篇
  1993年   27篇
  1992年   16篇
  1991年   10篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
排序方式: 共有8938条查询结果,搜索用时 15 毫秒
171.
Heavy metal pollution and soil acidification are serious global environmental issues. The combined pollution from acidification and heavy metal has become a new environmental issue in regions where the two issues simultaneously occur. However, studies on combined pollution are still limited. In the current study, we investigated the combined effect and mechanism of acidity and heavy metal [lead ion (Pb2+)] on soybean biomass as well as on growth, nitrogen nutrition, and antioxidant system in soybean roots. Results showed that the combined treatment with acidity and Pb2+ decreased the soybean biomass. At pH 4.5, the soybean biomass in the combined treatment with acidity and 0.9 mmol L?1 Pb2+ was lower than that in the combined treatment with acidity and Pb2+ at 0.3 or 1.5 mmol L?1. This result was also observed at pH 3.5 and 3.0. The combined treatment with acidity and Pb2+ also resulted in the following consequences: root growth inhibition; decrease in nitrate, ammonium, and malondialdehyde contents; increase in nitrite reductase activity; and decrease in peroxidase activity. The extent at which the test indexes decreased/increased in the combined treatment was higher than that in the single acidity treatment. The correlation analysis results indicated that the decrease in the soybean biomass in the combined treatment with acidity and Pb2+ resulted from the decrease in the root growth, nitrate–nitrogen assimilation, and peroxidase activity.  相似文献   
172.
Members of a family of collagen-binding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) from Gram-positive bacteria are established virulence factors in several infectious diseases models. Here, we report that these adhesins also can bind C1q and act as inhibitors of the classical complement pathway. Molecular analyses of Cna from Staphylococcus aureus suggested that this prototype MSCRAMM bound to the collagenous domain of C1q and interfered with the interactions of C1r with C1q. As a result, C1r2C1s2 was displaced from C1q, and the C1 complex was deactivated. This novel function of the Cna-like MSCRAMMs represents a potential immune evasion strategy that could be used by numerous Gram-positive pathogens.  相似文献   
173.
Atherosclerosis is considered a disease of chronic inflammation largely initiated and perpetuated by macrophage-dependent synthesis and release of pro-inflammatory mediators. Class A scavenger receptor (SR-A) expressed on macrophages plays a key role in this process. However, how SR-A-mediated pro-inflammatory response is modulated in macrophages remains ill defined. Here through immunoprecipitation coupled with mass spectrometry, we reported major vault protein (MVP) as a novel binding partner for SR-A. The interaction between SR-A and MVP was confirmed by immunofluorescence staining and chemical cross-linking assay. Treatment of macrophages with fucoidan, a SR-A ligand, led to a marked increase in TNF-α production, which was attenuated by MVP depletion. Further analysis revealed that SR-A stimulated TNF-α synthesis in macrophages via the caveolin- instead of clathrin-mediated endocytic pathway linked to p38 and JNK, but not ERK, signaling pathways. Importantly, fucoidan invoked an enrichment of MVP in lipid raft, a caveolin-reliant membrane structure, and enhanced the interaction among SR-A, caveolin, and MVP. Finally, we demonstrated that MVP elimination ameliorated SR-A-mediated apoptosis in macrophages. As such, MVP may fine-tune SR-A activity in macrophages which contributes to the development of atherosclerosis.  相似文献   
174.
Rhesus macaques have long been used as animal models for various human diseases; the susceptibility and/or resistance to some of these diseases are related to the major histocompatibility complex (MHC). To gain insight into the MHC background and to facilitate the experimental use of Chinese rhesus macaques, Mamu-DPA1, Mamu-DQA1, and Mamu-DRA alleles were investigated in 30 Chinese rhesus macaques by gene cloning and sequencing. A total of 14 Mamu-DPA1, 17 Mamu-DQA1, and 9 Mamu-DRA alleles were identified in this study. Of these alleles, 22 novel sequences have not been documented in earlier studies, including nine Mamu-DPA1, ten Mamu-DQA1, and three Mamu-DRA alleles. Interestingly, like Mafa-DQA1 and Mafa-DPA1, more than two Mamu-DQA1 and Mamu-DPA1 alleles were detected in one animal in this study, which suggested that they might represent gene duplication. If our findings can be validated by other studies, it will further increase the number of known Mamu-DPA1 and Mamu-DQA1 polymorphisms. Our data also indicated significant differences in MHC class II allele distribution among the Chinese rhesus macaques, Vietnamese cynomolgus macaques, and the previously reported rhesus macaques, which were mostly of Indian origin. This information will not only promote the understanding of Chinese rhesus macaque MHC diversity and polymorphism but will also facilitate the use of Chinese rhesus macaques in studies of human disease.  相似文献   
175.
One criterion for microRNA identification is based on their conservation across species, and prediction of miRNA targets by empirical approaches using computational analysis relies on the presence of conservative mRNA 3′UTR. Because most miRNA target sites identified are highly conserved across different species, it is not clear whether miRNA targeting is species-specific. To predict miRNA targeting, we aligned all available fibronectin 3′UTRs and observed significant conservation of all 20 species. Twelve miRNAs were predicted to target most fibronectin 3′UTRs, but rodent fibronectin showed potential binding sites specific for five different miRNAs. One of them, the miR-378a-5p, contained a complete matching seed-region for all rodent fibronectin, which could not be found in any other species. We designed experiments to test whether the species-specific targeting possessed biological function and found that expression of miR-378a-5p decreased cancer cell proliferation, migration, and invasion, resulting in inhibition of tumor growth. Silencing fibronectin expression produced similar effects as miR-378a-5p, while transfection with a construct targeting miR-378-5p produced opposite results. Tumor formation assay showed that enhanced expression of fibronectin in the stromal tissues as a background environment suppressed tumor growth, while increased fibronectin expression inside the tumor cells promoted tumor growth. This was likely due to the different signaling direction, either inside-out or outside-in signal. Our results demonstrated that species-specific targeting by miRNA could also exert functional effects. Thus, one layer of regulation has been added to the complex network of miRNA signaling.  相似文献   
176.
The antineoplastic target aldo–keto reductase family member 1B10 (AKR1B10) and the critical polyol pathway enzyme aldose reductase (AKR1B1) share high structural similarity. Crystal structures reported here reveal a surprising Trp112 native conformation stabilized by a specific Gln114-centered hydrogen bond network in the AKR1B10 holoenzyme, and suggest that AKR1B1 inhibitors could retain their binding affinities toward AKR1B10 by inducing Trp112 flip to result in an “AKR1B1-like” active site in AKR1B10, while selective AKR1B10 inhibitors can take advantage of the broader active site of AKR1B10 provided by the native Trp112 side-chain orientation.  相似文献   
177.
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management.  相似文献   
178.
The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号