首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68147篇
  免费   5650篇
  国内免费   47篇
  2023年   318篇
  2022年   708篇
  2021年   1405篇
  2020年   955篇
  2019年   1062篇
  2018年   1500篇
  2017年   1235篇
  2016年   2030篇
  2015年   2944篇
  2014年   2977篇
  2013年   3669篇
  2012年   4530篇
  2011年   4263篇
  2010年   2618篇
  2009年   2499篇
  2008年   3170篇
  2007年   3138篇
  2006年   2919篇
  2005年   3126篇
  2004年   3061篇
  2003年   2641篇
  2002年   2187篇
  2001年   1608篇
  2000年   1479篇
  1999年   1403篇
  1998年   731篇
  1997年   648篇
  1996年   698篇
  1995年   525篇
  1994年   538篇
  1993年   514篇
  1992年   972篇
  1991年   881篇
  1990年   803篇
  1989年   810篇
  1988年   785篇
  1987年   713篇
  1986年   665篇
  1985年   671篇
  1984年   626篇
  1983年   469篇
  1982年   360篇
  1981年   364篇
  1980年   341篇
  1979年   449篇
  1978年   373篇
  1977年   310篇
  1975年   304篇
  1974年   305篇
  1973年   304篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
71.
In an attempt to unveil the origin of neo‐sex chromosomes in Ronderosia Cigliano grasshoppers, we performed a combined phylogenetic analysis based on morphological (external morphology and male genitalia) and molecular data (COI, COII, 16S and ITS2) to explore the chromosome evolution within the genus. We also analysed the distributional patterns of the various Ronderosia species and considered the possible role of chromosome rearrangements (CRs) in speciation processes within the genus in the light of ‘suppressed‐recombination’ models. We mapped the states of three chromosomal characters on the combined tree topology. The combined evidence supported Ronderosia as a monophyletic group. The cytogenetic analyses of the genus demonstrated the importance of rearranged karyotypes with single, complex and multiples neo‐sex chromosome determination systems in all species. The chromosome character optimisation suggests X‐autosome centric fusion as the mechanism responsible for neo‐sex chromosome formation in most Ronderosia species, except in R. dubia and R. bergii. Similar autosomes were involved in fusions with the ancestral X chromosome in Ronderosia, supporting previous hypotheses on the unique origin of X‐autosome fusion for the sex chromosome in the genus. As a source of chromosome variation, autosome‐autosome centric fusion played a secondary role in Ronderosia compared with other Dichroplini. Given the homogeneity in the morphological features, the sympatric distribution of closely related species and the intrinsic property of centric fusion as suppressors of the crossing over, we suggest that CRs may have played a key role during the speciation process within Ronderosia.  相似文献   
72.
Understanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas‐fir (Pseudotsuga menziesii var. glauca) EMF communities, but mechanisms leading to their coexistence are unknown. We investigated the microsite associations and foraging strategy of individual R. vesiculosus and R. vinicolor genets. Mycelia spatial patterns, pervasiveness and root colonization patterns of fungal genets were compared between Rhizopogon species and between xeric and mesic soil moisture regimes. Rhizopogon spp. mycelia were systematically excavated from the soil and identified using microsatellite DNA markers. Rhizopogon vesiculosus mycelia occurred at greater depth, were more spatially pervasive, and colonized more tree roots than R. vinicolor mycelia. Both species were frequently encountered in organic layers and between the interface of organic and mineral horizons. They were particularly abundant within microsites associated with soil moisture retention. The occurrence of R. vesiculosus shifted in the presence of R. vinicolor towards mineral soil horizons, where R. vinicolor was mostly absent. This suggests that competition and foraging strategy may contribute towards the vertical partitioning observed between these species. Rhizopogon vesiculosus and R. vinicolor mycelia systems occurred at greater mean depths and were more pervasive in mesic plots compared with xeric plots. The spatial continuity and number of trees colonized by genets of each species did not significantly differ between soil moisture regimes.  相似文献   
73.
Blue Dextran has been coupled covalently to Sepharose-4B to purify the enzymatic complex NAD(P)H-nitrate reductase (EC 1.6.6.2) from the green alga Ankistrodesmus braunii by affinity chromatography. The optimum conditions for the accomplishment of the chromatographic process have been determined. The adsorption of nitrate reductase on Blue Dextran Sepharose is optimum when a phosphate buffer of low ionic strength and pH 6.5-7.0 is used. Once the enzyme has been bound to Blue Dextran Sepharose, it can be specifically eluted by addition of NADH and FAD to the washing buffer. However, none of the nucleotides added separately is able to promote the elution of the enzyme from the column. The elution can be also achieved, but not specifically, by increasing the ionic strength of the buffer with KCl. These results have made possible a procedure for the purification of A. braunii nitrate reductase which led to electrophoretic homogeneity, with an overall yield of 70% and a specific activity of 49 units/mg of protein.  相似文献   
74.
75.
Quince (Cydonia oblonga Mill.), pear (Pyrus communis L.) and olive (Olea europaea L.) genotypes were evaluated for their tolerance to iron deficiency stress by growing young plants in three types of aerated nutrient solutions: (1) with iron, (2) without iron or (3) low in iron and with 10 mM bicarbonate. Plants were obtained either from rooted softwood cuttings or from germination of seeds. The degree of tolerance was evaluated with several indices: (1) the chlorophyll content, (2) the root Fe3+ reducing capacity and (3) the whole plant relative growth. Fifteen hours before Fe3+ reducing capacity determination, iron was applied to the roots of plants with iron-stress, since this method resulted in increasing the reductase activity. All quince and pear genotypes increased the root Fe3+ reducing capacity when grown in the treatments for iron-stress, in relation to control plants of the same genotypes. In olive cultivars, the Fe3+ reducing capacity was lower in the iron-stress treatments than in the control one. Studying the relationship between relative growth and chlorophyll content for each genotype under iron-stress, in relation to both indices in control plants, a classification of species and genotypes was established. According to that, most olive cultivars and some pear rootstocks and cultivars appear more iron-efficient than quince rootstocks. Our study shows that in some woody species, determining root Fe3+ reducing capacity is not the best method to establish tolerance to iron deficiency stress.  相似文献   
76.
77.
78.

Background  

With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows.  相似文献   
79.
Immunopurified human sex hormone binding globulin (SHBG) was photoinactivated and photolabeled by radioinert and radioactive photoaffinity labeling steroids delta 6-testosterone (delta 6-T) and delta 6-estradiol (delta 6-E2). The maximal levels of specific incorporation of these two reagents were 0.50 and 0.33 mol of label/mol of SHBG, respectively. Covalently labeled SHBG fractions were citraconylated, reduced, carboxymethylated, and cleaved by trypsin. Separation of tryptic digests by reverse-phase liquid chromatography gave single radioactive peaks at the same retention times with both steroid reagents. However, the two labeled peptidic fractions could be distinguished by capillary electrophoresis and immunodetection with anti-steroid antibodies, whereas the covalent attachment of radioactivity was confirmed by thin-layer chromatography on silica gel. Edman degradation of the two labeled peptides showed a single sequence His-Pro-Ile-([3H]X)-Arg corresponding to the pentapeptide His-Pro-Ile-Met-Arg 136-140 of SHBG sequence. The coincidence, in both cases, of the absence of an identifiable amino acid residue and of the elution of the most intense peak of radioactivity at the fourth cycle of Edman degradation suggests that the same Met-139 residue was labeled by delta 6-[1,2-3H2]T or by delta 6-[17 alpha-3H]E2. Liquid secondary ion mass spectrometry of the two peptides showed [M+H]+ ions at m/z 939.8 or 923.8, corresponding respectively to the addition of delta 6-T or delta 6-E2 to the pentapeptide. The presence of the steroid molecule in the delta 6-[3H]T-pentapeptide conjugate was confirmed by the difference of 2 mass units with the [M+H]+ peak of the delta 6-[4-14C]T-pentapeptide conjugate.  相似文献   
80.
Capture and long‐distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg‐laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture‐mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号