首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13977篇
  免费   1158篇
  国内免费   12篇
  2023年   67篇
  2022年   171篇
  2021年   370篇
  2020年   188篇
  2019年   230篇
  2018年   312篇
  2017年   237篇
  2016年   409篇
  2015年   619篇
  2014年   687篇
  2013年   834篇
  2012年   1146篇
  2011年   1153篇
  2010年   710篇
  2009年   653篇
  2008年   921篇
  2007年   888篇
  2006年   880篇
  2005年   774篇
  2004年   733篇
  2003年   712篇
  2002年   631篇
  2001年   178篇
  2000年   114篇
  1999年   186篇
  1998年   171篇
  1997年   115篇
  1996年   110篇
  1995年   72篇
  1994年   76篇
  1993年   79篇
  1992年   58篇
  1991年   71篇
  1990年   45篇
  1989年   64篇
  1988年   37篇
  1987年   34篇
  1986年   36篇
  1985年   53篇
  1984年   52篇
  1983年   30篇
  1982年   25篇
  1981年   34篇
  1980年   26篇
  1979年   14篇
  1978年   18篇
  1977年   17篇
  1976年   12篇
  1973年   12篇
  1971年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Wheat, Triticum aestivum L., with Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) resistance based on the Dn4 gene has been important in managing Russian wheat aphid since 1994. Recently, five biotypes (RWA1-RWA5) of this aphid have been described based on their ability to differentially damage RWA resistance genes in wheat. RWA2, RWA4, and RWA5 are of great concern because they can kill wheat with Dn4 resistance. In 2005, 365 Russian wheat aphid clone colonies were made from collections taken from 98 fields of wheat or barley, Hordeum vulgare L., in Oklahoma, Texas, New Mexico, Colorado, Kansas, Nebraska, and Wyoming to determine their biotypic status. The biotype of each clone was determined through its ability to differentially damage two resistant and two susceptible wheat entries in two phases of screening. The first phase determined the damage responses of Russian wheat aphid wheat entries with resistance genes Dn4, Dn7, and susceptible 'Custer' to infestations by each clone to identify RWA1 to RWA4. The second phase used the responses of Custer and 'Yuma' wheat to identify RWA1 and RWA5. Only two biotypes, RWA1 and RWA2, were identified in this study. The biotype composition across all collection sites was 27.2% RWA1 and 72.8% RWA2. RWA biotype frequency by state indicated that RWA2 was the predominant biotype and composed 73-95% of the biotype complex in Texas, Oklahoma, Colorado, and Wyoming. Our study indicated that RWA2 is widely distributed and that it has rapidly dominated the biotype complex in wheat and barley within its primary range from Texas to Wyoming. Wheat with the Dn4 resistance gene will have little value in managing RWA in the United States, based on the predominance of RWA2.  相似文献   
992.
In spermatozoa, voltage-dependent calcium channels (VDCC) have been involved in different cellular functions like acrosome reaction (AR) and sperm motility. Multiple types of VDCC are present and their relative contribution is still a matter of debate. Based mostly on pharmacological studies, low-voltage-activated calcium channels (LVA-CC), responsible of the inward current in spermatocytes, were described as essential for AR in sperm. The development of Ca(V)3.1 or Ca(V)3.2 null mice provided the opportunity to evaluate the involvement of such LVA-CC in AR and sperm motility, independently of pharmacological tools. The inward current was fully abolished in spermatogenic cells from Ca(V)3.2 deficient mice. This current is thus only due to Ca(V)3.2 channels. We showed that Ca(V)3.2 channels were maintained in sperm by Western-blot and immunohistochemistry experiments. Calcium imaging experiments revealed that calcium influx in response to KCl was reduced in Ca(V)3.2 null sperm in comparison to control cells, demonstrating that Ca(V)3.2 channels were functional. On the other hand, no difference was noticed in calcium signaling induced by zona pellucida. Moreover, neither biochemical nor functional experiments, suggested the presence of Ca(V)3.1 channels in sperm. Despite the Ca(V)3.2 channels contribution in KCl-induced calcium influx, the reproduction parameters remained intact in Ca(V)3.2 deficient mice. These data demonstrate that in sperm, besides Ca(V)3.2 channels, other types of VDCC are activated during the voltage-dependent calcium influx of AR, these channels likely belonging to high-voltage activated Ca(2+) channels family. The conclusion is that voltage-dependent calcium influx during AR is due to the opening of redundant families of calcium channels.  相似文献   
993.
The Ca(2+)-sensitive K(+) channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca(2+) loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age-activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K(+) permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age-density distribution pattern during dehydration. However, when Ca(2+) loads were used to induce maximal K(+) fluxes via Gardos channels in all RBCs (F(max)), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F(max) was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age-activity relation revealed a monotonic decline in F(max) with cell age, with a broad quasi-Gaussian F(max) distribution among the RBCs.  相似文献   
994.
Systemic delivery of Ag usually induces poor mucosal immunity. To improve the CD8 T cell response at mucosal sites, we targeted the Ag to MAdCAM-1, a mucosal addressin cell adhesion molecule expressed mainly by high endothelial venules (HEV) in mesenteric lymph nodes (MLN) and Peyer's patches of gut-associated lymphoid tissue. When chemical conjugates of anti-MAdCAM-1 Ab and model Ag OVA were injected i.v., a greatly enhanced proliferative response of Ag-specific OT-I CD8 T cells was detected in MLN. This was preceded by prolonged accumulation, up to 2 wk, of the anti-MAdCAM OVA conjugate on HEV of Peyer's patches and MLN. In contrast, nontargeted OVA conjugate was very inefficient in inducing OT-I CD8 T cell proliferation in MLN and required at least 20-fold more Ag to induce a comparable response. In addition, MAdCAM targeting elicits an endogenous OVA-specific CD8 T cell response, evident by IFN-gamma production and target killing. Induced response offers protection against an OVA-expressing B cell lymphoma. We propose that the augmentation of gut CD8 T cell responses by MAdCAM targeting is due to both accumulation of Ag in the HEV and conversion of a soluble Ag to a cell-associated one, allowing cross-presentation by DCs.  相似文献   
995.
996.
Adeno-associated virus (AAV) replicates its DNA by a modified rolling-circle mechanism that exclusively uses leading strand displacement synthesis. To identify the enzymes directly involved in AAV DNA replication, we fractionated adenovirus-infected crude extracts and tested them in an in vitro replication system that required the presence of the AAV-encoded Rep protein and the AAV origins of DNA replication, thus faithfully reproducing in vivo viral DNA replication. Fractions that contained replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) were found to be essential for reconstituting AAV DNA replication. These could be replaced by purified PCNA and RFC to retain full activity. We also found that fractions containing polymerase delta, but not polymerase epsilon or alpha, were capable of replicating AAV DNA in vitro. This was confirmed when highly purified polymerase delta complex purified from baculovirus expression clones was used. Curiously, as the components of the DNA replication system were purified, neither the cellular single-stranded DNA binding protein (RPA) nor the adenovirus-encoded DNA binding protein was found to be essential for DNA replication; both only modestly stimulated DNA synthesis on an AAV template. Also, in addition to polymerase delta, RFC, and PCNA, an as yet unidentified factor(s) is required for AAV DNA replication, which appeared to be enriched in adenovirus-infected cells. Finally, the absence of any apparent cellular DNA helicase requirement led us to develop an artificial AAV replication system in which polymerase delta, RFC, and PCNA were replaced with T4 DNA polymerase and gp32 protein. This system was capable of supporting AAV DNA replication, demonstrating that under some conditions the Rep helicase activity can function to unwind duplex DNA during strand displacement synthesis.  相似文献   
997.
998.
We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils.  相似文献   
999.
Two melanocyte-stimulating hormone release inhibiting factor-1 (MIF-1) also known as L-prolyl-L-leucyl-glycinamide (PLG) peptidomimetic analogs, 3(R)-[[[2(S)-pyrrolidinyl]carbonyl]-amino]-3-(butyl)-2-oxo-1-pyrrolidineacetamide trifluoroacetate (A) and 3(R)-[[[2(S)-pyrrolidinyl]carbonyl]amino]-3-(benzyl)-2-oxo-1-pyrrolidineacetamide trifluoroacetate (B), were evaluated for their ability to modulate dopaminergic activity by measuring apomorphine-induced rotations in 6-hydroxydopamine (6-OHDA)-lesioned rats, and haloperidol (HP)-induced vacuous chewing movements (VCMs) in rats; animal models of Parkinson's disease (PD) and human tardive dyskinesia (TD), respectively. In the 6-OHDA model, both analogs were found to potentiate the contralateral rotational behavior induced by apomorphine dose-dependently and with approximately the same potency. Furthermore, each analog was able to significantly attenuate HP-induced VCMs with almost equal efficacy. The potency and efficacy of these analogs were significantly greater than their parent compound, PLG. These results suggest that both analogs can modulate dopaminergic activity in vivo, likely by the same mechanisms recruited by PLG previously reported.  相似文献   
1000.
Biometals have an important role in AD (Alzheimer's disease) and metal ligands have been investigated as potential therapeutic agents for treatment of AD. In recent studies the 8HQ (8-hydroxyquinoline) derivative CQ (clioquinol) has shown promising results in animal models and small clinical trials; however, the actual mode of action in vivo is still being investigated. We previously reported that CQ-metal complexes up-regulated MMP (matrix metalloprotease) activity in vitro by activating PI3K (phosphoinositide 3-kinase) and JNK (c-jun N-terminal kinase), and that the increased MMP activity resulted in enhanced degradation of secreted Abeta (amyloid beta) peptide. In the present study, we have further investigated the biochemical mechanisms by which metal ligands affect Abeta metabolism. To achieve this, we measured the effects of diverse metal ligands on cellular metal uptake and secreted Abeta levels in cell culture. We report that different classes of metal ligands including 8HQ and phenanthroline derivatives and the sulfur compound PDTC (pyrrolidine dithiocarbamate) elevated cellular metal levels (copper and zinc), and resulted in substantial loss of secreted Abeta. Generally, the ability to inhibit Abeta levels correlated with a higher lipid solubility of the ligands and their capacity to increase metal uptake. However, we also identified several ligands that potently inhibited Abeta levels while only inducing minimal change to cellular metal levels. Metal ligands that inhibited Abeta levels [e.g. CQ, 8HQ, NC (neocuproine), 1,10-phenanthroline and PDTC] induced metal-dependent activation of PI3K and JNK, resulting in JNK-mediated up-regulation of metalloprotease activity and subsequent loss of secreted Abeta. The findings in the present study show that diverse metal ligands with high lipid solubility can elevate cellular metal levels resulting in metalloprotease-dependent inhibition of Abeta. Given that a structurally diverse array of ligands was assessed, the results are consistent with the effects being due to metal transport rather than the chelating ligand interacting directly with a receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号