首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13468篇
  免费   1055篇
  国内免费   12篇
  2024年   12篇
  2023年   68篇
  2022年   188篇
  2021年   361篇
  2020年   187篇
  2019年   228篇
  2018年   304篇
  2017年   236篇
  2016年   403篇
  2015年   609篇
  2014年   678篇
  2013年   811篇
  2012年   1120篇
  2011年   1120篇
  2010年   701篇
  2009年   642篇
  2008年   895篇
  2007年   874篇
  2006年   864篇
  2005年   754篇
  2004年   717篇
  2003年   688篇
  2002年   611篇
  2001年   147篇
  2000年   87篇
  1999年   156篇
  1998年   161篇
  1997年   107篇
  1996年   105篇
  1995年   65篇
  1994年   71篇
  1993年   75篇
  1992年   39篇
  1991年   47篇
  1990年   35篇
  1989年   45篇
  1988年   27篇
  1987年   22篇
  1986年   17篇
  1985年   45篇
  1984年   42篇
  1983年   26篇
  1982年   21篇
  1981年   29篇
  1980年   25篇
  1979年   12篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Cope's gray tree frog Hyla chrysoscelis accumulates glycerol during cold acclimation. We hypothesized that, during this process, gray tree frogs adjust renal filtration and/or reabsorption rates to retain accumulated glycerol. During cold acclimation, plasma concentrations of glycerol rose >200-fold, to 51 mmol/l. Although fractional water reabsorption decreased, glomerular filtration rate (GFR) and, consequently, urine flow were <5% of warm levels, and fractional glycerol reabsorption increased. In contrast, dehydrated frogs increased fractional water reabsorption, decreased GFR, and did not accumulate glycerol. We hypothesized that expression of proteins from the aquaporin (AQP)/glyceroporin (GLP) family was associated with changing patterns of water and glycerol movement. We cloned the cDNA for three such proteins, quantified mRNA expression in nine tissues using real-time quantitative PCR, and functionally characterized them using a Xenopus oocyte expression system. HC-1, an AQP1-like water channel conferring low glycerol permeability, is expressed ubiquitously in warm- and cold-acclimated tissues. HC-2, a water channel most similar to AQP2, is primarily expressed in organs of osmoregulation. HC-3, which is most similar to AQP3, is functionally characterized as a GLP, with low permeability to water but high permeability to glycerol. Aspects of expression levels and functional characteristics varied between cold and warm conditions for each of the three AQPs, suggesting a complex pattern of involvement in osmoregulation related to thermal acclimation.  相似文献   
972.
Acute exercise increases myocardial tolerance to ischemia-reperfusion (I-R) injury in male but not in female rat hearts, possibly due to a decreased heat shock protein 70 (Hsp70) response in the female hearts. This study examined whether repetitive exercise training would increase Hsp70 and myocardial tolerance to I-R injury in female rat hearts. Adaptations in myocardial manganese superoxide dismutase (MnSOD) and endothelial nitric oxide synthase (eNOS) were also assessed. Ten-week old male (M) and female (F) Sprague-Dawley rats (n = 40 total) exercise-trained for 14 wk; the last 8 wk consisted of running 1 h at 30 m/min (2% incline), 5 days/wk. Following training, left ventricle mechanical function (LVMF) was monitored for 30 min of reperfusion following 30 min of global ischemia (Langendorff procedure). Myocardial Hsp70 content was not different in M and F control groups, while increases were observed in both trained groups (M greater than F; P < 0.05). Although MnSOD content did not differ between groups, endothelial nitric oxide synthase (eNOS) levels were decreased in F, with no change in M, following training (P < 0.05). Hearts from control F demonstrated a greater recuperation of all indices of LVMF following I-R compared with control M hearts (P < 0.05). Hearts of trained M exhibited improved recovery of LVMF (left ventricular diastolic pressure, left ventricular end-diastolic pressure, +dP/dt, -dP/dt) during reperfusion compared with control M hearts (P < 0.05). In contrast, hearts of trained F did not show any change in recovery from I-R. Hence, exercise training is more beneficial to M than F in improving myocardial function following I-R injury.  相似文献   
973.
Reversible tetrapeptide-based compounds have been shown to effectively inhibit the hepatitis C virus NS3.4A protease. Inhibition of viral replicon RNA production in Huh-7 cells has also been demonstrated. We show herein that the inclusion of hydrogen bond donors on the P4 capping group of tetrapeptide-based inhibitors result in increased binding potency to the NS3.4A protease. The capping groups also impart significant effects on the pharmacokinetic profile of these inhibitors.  相似文献   
974.
Investigation of halogen substitution in lead compound 1 has led to the identification of analogues which combine high affinity for 5-HT(1A) receptors and potent serotonin reuptake inhibitory activity. Several compounds show an improved selectivity over 5-HT(1B) and 5-HT(1D) receptors and a superior pharmacokinetic profile in the rat.  相似文献   
975.
A series of amino-caprolactam sulfonamides were developed from a screening hit. Compounds with good in vitro and in vivo gamma-secretase activity are reported.  相似文献   
976.
Synaptojanin is a lipid phosphatase required to degrade phosphatidylinositol 4,5 bisphosphate (PIP(2)) at cell membranes during synaptic vesicle recycling. Synaptojanin mutants in C. elegans are severely uncoordinated and are depleted of synaptic vesicles, possibly because of accumulation of PIP(2). To identify proteins that act downstream of PIP(2) during endocytosis, we screened for suppressors of synaptojanin mutants in the nematode C. elegans. A class of uncoordinated mutants called "fainters" partially suppress the locomotory, vesicle depletion, and electrophysiological defects in synaptojanin mutants. These suppressor loci include the genes for the NCA ion channels, which are homologs of the vertebrate cation leak channel NALCN, and a novel gene called unc-80. We demonstrate that unc-80 encodes a novel, but highly conserved, neuronal protein required for the proper localization of the NCA-1 and NCA-2 ion channel subunits. These data suggest that activation of the NCA ion channel in synaptojanin mutants leads to defects in recycling of synaptic vesicles.  相似文献   
977.
A series of N-alkylbenzenesulfonamides were developed from a high throughput screening hit. Classic and parallel synthesis strategies were employed to produce compounds with good in vitro and in vivo gamma-secretase activity.  相似文献   
978.
An extraordinarily potent and hepatoselective class of HMG-CoA reductase inhibitors containing a pyrazole core was recently reported; however, its development was hampered by a long and difficult synthetic route. We attempted to circumvent this obstacle by preparing closely related analogs wherein the key dihydroxyheptanoic acid sidechain was tethered to the pyrazole core via an oxygen linker ('oxypyrazoles'). This minor change reduced the total number of synthetic steps from 14 to 7. Although the resulting analogs maintained much of the in vitro and cell activity of the pyrazoles, inferior in vivo activity precluded further development. Caco-2 cell permeability data suggest that enhanced cellular efflux of the oxypyrazoles relative to the pyrazoles may be responsible for the poor in vivo activity.  相似文献   
979.
The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to the metre length scale of the whole cardiovascular system in a living patient. Synchrony over these scales requires a hierarchy of control mechanisms that are governed by a single common principle: integration of structure and function. To ensure that the function of ion channels and contraction of muscle cells lead to changes in heart chamber volume, an elegant choreography of metabolic, electrical and mechanical events are executed by protein networks composed of extracellular matrix, transmembrane integrin receptors and cytoskeleton which are functionally connected across all size scales. These structural control networks are mechanoresponsive, and they process mechanical and chemical signals in a massively parallel fashion, while also serving as a bidirectional circuit for information flow. This review explores how these hierarchical structural networks regulate the form and function of living cells and tissues, as well as how microfabrication techniques can be used to probe this structural control mechanism that maintains metabolic supply, electrical activation and mechanical pumping of heart muscle. Through this process, we delineate various design principles that may be useful for engineering artificial heart tissue in the future.  相似文献   
980.
Arabidopsis plants were transformed with a multi-gene construct for expression of the polyhydroxybutyrate (PHB) biosynthetic pathway containing a gene switch that can be activated by commercially available non-steroidal ecdysone analogs approved for use on some crops as pesticides. T(1) progeny of transgenic Arabidopsis plants were isolated and screened for PHB production in the presence of ecdysone analogs. T(2) progeny derived from selected T(1) lines were subjected to further analysis by comparing PHB production levels prior to treatment with inducing agent and 21 days after initiation of induction. Significant PHB production was delayed in many of the engineered plants until after induction. PHB levels of up to 14.3% PHB per unit dry weight were observed in young leaves harvested from engineered T(2) plants after applications of the commercial ecdysone analog Mimic. PHB in older leaves reached levels of up to 7% PHB per unit dry weight. This study represents a first step towards engineering a chemically inducible gene switch for PHB production in plants using inducing agents that are approved for field use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号