首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   46篇
  2024年   2篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   14篇
  2019年   11篇
  2018年   25篇
  2017年   13篇
  2016年   27篇
  2015年   28篇
  2014年   35篇
  2013年   36篇
  2012年   51篇
  2011年   51篇
  2010年   40篇
  2009年   27篇
  2008年   39篇
  2007年   35篇
  2006年   31篇
  2005年   25篇
  2004年   35篇
  2003年   20篇
  2002年   15篇
  2001年   3篇
  2000年   4篇
  1999年   6篇
  1998年   8篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有604条查询结果,搜索用时 78 毫秒
111.
112.
YKL-40, a chitinase-3-like protein 1 (CHI3L1) or human cartilage glycoprotein 39 (HC gp-39), is expressed and secreted by various cell-types including macrophages, chondrocytes, fibroblast-like synovial cells and vascular smooth muscle cells. Its biological function is not well elucidated, but it is speculated to have some connection with inflammatory reactions and autoimmune diseases. Although having important biological roles in autoimmunity, there were only attempts to elucidate relationships of YKL-40 with a single or couple of diseases in the literature. Therefore, in order to analyze the relationship between YKL-40 and the overall diseases, we reviewed 51 articles that discussed the association of YKL-40 with rheumatoid arthritis, psoriasis, systemic lupus erythematosus, Behçet disease and inflammatory bowel disease. Several studies showed that YKL-40 could be assumed as a marker for disease diagnosis, prognosis, disease activity and severity. It is also shown to be involved in response to disease treatment. However, other studies showed controversial results particularly in the case of Behçet disease activity. Therefore, further studies are needed to elucidate the exact role of YKL-40 in autoimmunity and to investigate its potential in therapeutics.  相似文献   
113.
Leaf senescence is the final stage of leaf development in which the nutrients invested in the leaf are remobilized to other parts of the plant. Whereas senescence is accompanied by a decline in leaf cytokinin content, exogenous application of cytokinins or an increase of the endogenous concentration delays senescence and causes nutrient mobilization. The finding that extracellular invertase and hexose transporters, as the functionally linked enzymes of an apolasmic phloem unloading pathway, are coinduced by cytokinins suggested that delay of senescence is mediated via an effect on source-sink relations. This hypothesis was further substantiated in this study by the finding that delay of senescence in transgenic tobacco (Nicotiana tabacum) plants with autoregulated cytokinin production correlates with an elevated extracellular invertase activity. The finding that the expression of an extracellular invertase under control of the senescence-induced SAG12 promoter results in a delay of senescence demonstrates that effect of cytokinins may be substituted by these metabolic enzymes. The observation that an increase in extracellular invertase is sufficient to delay leaf senescence was further verified by a complementing functional approach. Localized induction of an extracellular invertase under control of a chemically inducible promoter resulted in ectopic delay of senescence, resembling the naturally occurring green islands in autumn leaves. To establish a causal relationship between cytokinins and extracellular invertase for the delay of senescence, transgenic plants were generated that allowed inhibition of extracellular invertase in the presence of cytokinins. For this purpose, an invertase inhibitor was expressed under control of a cytokinin-inducible promoter. It has been shown that senescence is not any more delayed by cytokinin when the expression of the invertase inhibitor is elevated. This finding demonstrates that extracellular invertase is required for the delay of senescence by cytokinins and that it is a key element of the underlying molecular mechanism.  相似文献   
114.
Cho SK  Ryu MY  Seo DH  Kang BG  Kim WT 《Plant physiology》2011,157(4):2240-2257
The ubiquitin (Ub)-26S proteasome pathway is implicated in various cellular processes in higher plants. AtAIRP1, a C3H2C3-type RING (for Really Interesting New Gene) E3 Ub ligase, is a positive regulator in the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)-dependent drought response. Here, the AtAIRP2 (for Arabidopsis ABA-insensitive RING protein 2) gene was identified and characterized. AtAIRP2 encodes a cytosolic C3HC4-type RING E3 Ub ligase whose expression was markedly induced by ABA and dehydration stress. Thus, AtAIRP2 belongs to a different RING subclass than AtAIRP1 with a limited sequence identity. AtAIRP2-overexpressing transgenic (35S:AtAIRP2-sGFP) and atairp2 loss-of-function mutant plants exhibited hypersensitive and hyposensitive phenotypes, respectively, to ABA in terms of seed germination, root growth, and stomatal movement. 35S:AtAIRP2-sGFP plants were highly tolerant to severe drought stress, and atairp2 alleles were more susceptible to water stress than were wild-type plants. Higher levels of drought-induced hydrogen peroxide production were detected in 35S:AtAIRP2-sGFP as compared with atairp2 plants. ABA-inducible drought-related genes were up-regulated in 35S:AtAIRP2-sGFP and down-regulated in atairp2 progeny. The positive effects of AtAIRP2 on ABA-induced stress genes were dependent on SNF1-related protein kinases, key components of the ABA signaling pathway. Therefore, AtAIRP2 is involved in positive regulation of ABA-dependent drought stress responses. To address the functional relationship between AtAIRP1 and AtAIRP2, FLAG-AtAIRP1 and AtAIRP2-sGFP genes were ectopically expressed in atairp2-2 and atairp1 plants, respectively. Constitutive expression of FLAG-AtAIRP1 and AtAIRP2-sGFP in atairp2-2 and atairp1 plants, respectively, reciprocally rescued the loss-of-function ABA-insensitive phenotypes during germination. Additionally, atairp1/35S:AtAIRP2-sGFP and atairp2-2/35S:FLAG-AtAIRP1 complementation lines were more tolerant to dehydration stress relative to atairp1 and atairp2-2 single knockout plants. Overall, these results suggest that AtAIRP2 plays combinatory roles with AtAIRP1 in Arabidopsis ABA-mediated drought stress responses.  相似文献   
115.
Epstein-Barr virus (EBV) is associated with about 6 to 16% of gastric carcinoma cases worldwide. Expression of the EBV microRNAs (miRNAs) was observed in B cells and nasopharyngeal carcinoma cells infected with EBV. However, it is not clear if the EBV miRNAs are expressed in EBV-associated gastric carcinomas (EBVaGCs). We found that BART miRNAs but not BHRF1 miRNAs were expressed in EBV-infected gastric carcinoma cell lines and the tumor tissues from patients as well as the animal model. The expression of viral miRNAs in EBVaGCs suggests that these EBV miRNAs may play important roles in the tumorigenesis of EBVaGCs.  相似文献   
116.
MST1 (mammalian STE20-like kinase 1) is a serine/threonine kinase that is cleaved and activated by caspases during apoptosis. Overexpression of MST1 induces apoptotic morphological changes such as chromatin condensation, but the mechanism is not clear. Here we show that MST1 induces apoptotic chromatin condensation through its phosphorylation of histone H2AX at Ser-139. During etoposide-induced apoptosis in Jurkat cells, the cleavage of MST1 directly corresponded with strong H2AX phosphorylation. In vitro kinase assay results showed that MST1 strongly phosphorylates histone H2AX. Western blot and kinase assay results with a mutant S139A H2AX confirmed that MST1 phosphorylates H2AX at Ser-139. Direct binding of MST1 and H2AX can be detected when co-expressed in HEK293 cells and was also confirmed by an endogenous immunoprecipitation study. When overexpressed in HeLa cells, both the MST1 full-length protein and the MST1 kinase domain (MST1-NT), but not the kinase-negative mutant (MST1-NT-KN), could induce obvious endogenous histone H2AX phosphorylation. The caspase-3 inhibitor benzyloxycarbonyl-DEVD-fluoromethyl ketone (Z-DEVD-fmk) attenuates phosphorylation of H2AX by MST1 but cannot inhibit MST1-NT-induced histone H2AX phosphorylation, indicating that cleaved MST1 is responsible for H2AX phosphorylation during apoptosis. Histone H2AX phosphorylation and DNA fragmentation were suppressed in MST1 knockdown Jurkat cells after etoposide treatment. Taken together, our data indicated that H2AX is a substrate of MST1, which functions to induce apoptotic chromatin condensation and DNA fragmentation.  相似文献   
117.
Salicylic acid (SA), a common plant phenolic compound, influences diverse physiological and biochemical processes in plants. To gain insight into the mode of interaction between auxin, ethylene, and SA, the effect of SA on auxininduced ethylene production in mung bean hypocotyls was investigated. Auxin markedly induced ethylene production, while SA inhibited the auxin-induced ethylene synthesis in a dose-dependent manner. At 1 mM of SA, auxininduced ethylene production decreased more than 60% in hypocotyls. Results showed that the accumulation of ACC was not affected by SA during the entire period of auxin treatment, indicating that the inhibition of auxin-induced ethylene production by SA was not due to the decrease in ACC synthase activity, the rate-limiting step for ethylene biosynthesis. By contrast, SA effectively reduced not only the basal level of ACC oxidase activity but also the wound-and ethylene-induced ACC oxidase activity, the last step of ethylene production, in a dose-dependent manner. Northern and immuno blot analyses indicate that SA does not exert any inhibitory effect on the ACC oxidase gene expression, whereas it effectively inhibits both the in vivo and in vitro ACC oxidase enzyme activity, thereby abolishing auxin-induced ethylene production in mung bean hypocotyl tissue. It appears that SA inhibits ACC oxidase enzyme activity through the reversible interaction with Fe2+, an essential cofactor of this enzyme. These results are consistent with the notion that ethylene production is controlled by an intimate regulatory interaction between auxin and SA in mung bean hypocotyl tissue.  相似文献   
118.
High-level production of human leptin by fed-batch culture of recombinant Escherichia coli using constitutive promoter system was investigated. For the constitutive expression of the obese gene encoding human leptin, the strong constitutive HCE promoter cloned from the D-amino acid aminotransferase gene of Geobacillus toebii was used. To develop an optimal host-vector system, several different recombinant E. coli strains were compared for leptin production. In flask cultures, E. coli FMJ123, which is a rpoS mutant strain, showed the highest level of leptin production (41% of total proteins). By comparing the expression levels of leptin in several different rpoS- and rpoS+ strains, it could be concluded that rpoS mutation positively affected constitutive production of leptin. For the large-scale production of human leptin, fed-batch cultures of recombinant E. coli FMJ123 were carried out using three different feeding solutions--chemically defined, yeast extract-containing, and casamino acid-containing feeding solutions. Among these, the use of casamino acid-containing feeding solution allowed production of leptin up to 2.1 g/L, which was 2.1- and 1.8-fold higher than that obtained with chemically defined and yeast extract-contained feeding solutions, respectively. These results suggest that the HCE promoter can be used for the efficient production of leptin, and most likely other recombinant proteins, in a constitutive manner.  相似文献   
119.
Autophagy is a cellular degradation-recycling system for aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in various diseases including neurodegeneration, its role in pancreatic beta cells and glucose homeostasis has not been described. We produced mice with beta cell-specific deletion of Atg7 (autophagy-related 7). Atg7 mutant mice showed impaired glucose tolerance and decreased serum insulin level. beta cell mass and pancreatic insulin content were reduced because of increased apoptosis and decreased proliferation of beta cells. Physiological studies showed reduced basal and glucose-stimulated insulin secretion and impaired glucose-induced cytosolic Ca2+ transients in autophagy-deficient beta cells. Morphologic analysis revealed accumulation of ubiquitinated protein aggregates colocalized with p62, which was accompanied by mitochondrial swelling, endoplasmic reticulum distension, and vacuolar changes in beta cells. These results suggest that autophagy is necessary to maintain structure, mass and function of pancreatic beta cells, and its impairment causes insulin deficiency and hyperglycemia because of abnormal turnover and function of cellular organelles.  相似文献   
120.
Choi KS  Aizaki H  Lai MM 《Journal of virology》2005,79(15):9862-9871
Thorp and Gallagher first reported that depletion of cholesterol inhibited virus entry and cell-cell fusion of mouse hepatitis virus (MHV), suggesting the importance of lipid rafts in MHV replication (E. B. Thorp and T. M. Gallagher, J. Virol. 78:2682-2692, 2004). However, the MHV receptor is not present in lipid rafts, and anchoring of the MHV receptor to lipid rafts did not enhance MHV infection; thus, the mechanism of lipid rafts involvement is not clear. In this study, we defined the mechanism and extent of lipid raft involvement in MHV replication. We showed that cholesterol depletion by methyl beta-cyclodextrin or filipin did not affect virus binding but reduced virus entry. Furthermore, MHV spike protein bound to nonraftraft membrane at 4 degrees C but shifted to lipid rafts at 37 degrees C, indicating a redistribution of membrane following virus binding. Thus, the lipid raft involvement in MHV entry occurs at a step following virus binding. We also found that the viral spike protein in the plasma membrane of the infected cells was associated with lipid rafts, whereas that in the Golgi membrane, where MHV matures, was not. Moreover, the buoyant density of the virion was not changed when MHV was produced from the cholesterol-depleted cells, suggesting that MHV does not incorporate lipid rafts into the virion. These results indicate that MHV release does not involve lipid rafts. However, MHV spike protein has an inherent ability to associate with lipid rafts. Correspondingly, cell-cell fusion induced by MHV was retarded by cholesterol depletion, consistent with the association of the spike protein with lipid rafts in the plasma membrane. These findings suggest that MHV entry requires specific interactions between the spike protein and lipid rafts, probably during the virus internalization step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号