全文获取类型
收费全文 | 585篇 |
免费 | 40篇 |
国内免费 | 2篇 |
专业分类
627篇 |
出版年
2023年 | 4篇 |
2022年 | 6篇 |
2021年 | 16篇 |
2020年 | 11篇 |
2019年 | 5篇 |
2018年 | 8篇 |
2017年 | 4篇 |
2016年 | 16篇 |
2015年 | 55篇 |
2014年 | 42篇 |
2013年 | 54篇 |
2012年 | 56篇 |
2011年 | 49篇 |
2010年 | 38篇 |
2009年 | 31篇 |
2008年 | 42篇 |
2007年 | 36篇 |
2006年 | 26篇 |
2005年 | 32篇 |
2004年 | 22篇 |
2003年 | 17篇 |
2002年 | 20篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 6篇 |
1998年 | 7篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1991年 | 2篇 |
1989年 | 5篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 4篇 |
排序方式: 共有627条查询结果,搜索用时 15 毫秒
91.
92.
93.
Key role for mast cells in nonatopic asthma 总被引:7,自引:0,他引:7
Kraneveld AD van der Kleij HP Kool M van Houwelingen AH Weitenberg AC Redegeld FA Nijkamp FP 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(4):2044-2053
The mechanisms involved in nonatopic asthma are poorly defined. In particular, the importance of mast cells in the development of nonatopic asthma is not clear. In the mouse, pulmonary hypersensitivity reactions induced by skin sensitization with the low-m.w. compound dinitrofluorobenzene (DNFB) followed by an intra-airway application of the hapten have been featured as a model for nonatopic asthma. In present study, we used this model to examine the role of mast cells in the pathogenesis of nonatopic asthma. First, the effect of DNFB sensitization and intra-airway challenge with dinitrobenzene sulfonic acid (DNS) on mast cell activation was monitored during the early phase of the response in BALB/c mice. Second, mast cell-deficient W/W(v) and Sl/Sl(d) mice and their respective normal (+/+) littermate mice and mast cell-reconstituted W/W(v) mice (bone marrow-derived mast cells-->W/W(v)) were used. Early phase mast cell activation was found, which was maximal 30 min after DNS challenge in DNFB-sensitized BALB/c, +/+ mice but not in mast cell-deficient mice. An acute bronchoconstriction and increase in vascular permeability accompanied the early phase mast cell activation. BALB/c, +/+ and bone marrow-derived mast cell-->W/W(v) mice sensitized with DNFB and DNS-challenged exhibited tracheal hyperreactivity 24 and 48 h after the challenge when compared with vehicle-treated mice. Mucosal exudation and infiltration of neutrophils in bronchoalveolar lavage fluid associated the late phase response. Both mast cell-deficient strains failed to show any features of this hypersensitivity response. Our findings show that mast cells play a key role in the regulation of pulmonary hypersensitivity responses in this murine model for nonatopic asthma. 相似文献
94.
In rat kidney, megalin, a member of the low density lipoprotein receptor gene family, is the sole glycoprotein which carries oligo/poly 2,8 deaminoneuraminic acid (KDN) as a posttranslational modification. We have investigated immunoprecipitated megalin from rat brain, lung and placenta, mouse yolk sac carcinoma and megalin synthesizing carcinoma cell lines, for presence of this unique glycan structure. Our immunoblot analysis revealed the presence of oligo/poly 2,8 KDN on megalin in all the studied normal tissues and carcinoma cells. Furthermore, it is demonstrated that to be part of oligosaccharides O-glycosidically linked to megalin. 相似文献
95.
Ella Z. Lattenkamp Martina Nagy Markus Drexl Sonja C. Vernes Lutz Wiegrebe Mirjam Knrnschild 《Proceedings. Biological sciences / The Royal Society》2021,288(1942)
Differences in auditory perception between species are influenced by phylogenetic origin and the perceptual challenges imposed by the natural environment, such as detecting prey- or predator-generated sounds and communication signals. Bats are well suited for comparative studies on auditory perception since they predominantly rely on echolocation to perceive the world, while their social calls and most environmental sounds have low frequencies. We tested if hearing sensitivity and stimulus level coding in bats differ between high and low-frequency ranges by measuring auditory brainstem responses (ABRs) of 86 bats belonging to 11 species. In most species, auditory sensitivity was equally good at both high- and low-frequency ranges, while amplitude was more finely coded for higher frequency ranges. Additionally, we conducted a phylogenetic comparative analysis by combining our ABR data with published data on 27 species. Species-specific peaks in hearing sensitivity correlated with peak frequencies of echolocation calls and pup isolation calls, suggesting that changes in hearing sensitivity evolved in response to frequency changes of echolocation and social calls. Overall, our study provides the most comprehensive comparative assessment of bat hearing capacities to date and highlights the evolutionary pressures acting on their sensory perception. 相似文献
96.
van der Burg M Barendregt BH van Gastel-Mol EJ Tümkaya T Langerak AW van Dongen JJ 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(1):271-276
Two polymorphisms of the human Ig(lambda) (IGL) locus have been described. The first polymorphism concerns a single, 2- or 3-fold amplification of 5.4 kb of DNA in the C(lambda)2-C(lambda)3 region. The second polymorphism is the Mcg(-)Ke(+)Oz(-) isotype, which has only been defined via serological analyses in Bence-Jones proteins of multiple myeloma patients and was assumed to be encoded by a polymorphic C(lambda)2 segment because of its high homology with the Mcg(-)Ke(-)Oz(-) C(lambda)2 isotype. It has been speculated that the Mcg(-)Ke(+)Oz(-) isotype might be encoded by a C(lambda) gene segment of the amplified C(lambda)2-C(lambda)3 region. We now unraveled both IGL gene polymorphisms. The amplification polymorphism appeared to result from a duplication, triplication, or quadruplication of a functional J-C(lambda)2 region and is likely to have originated from unequal crossing over of the J-C(lambda)2 and J-C(lambda)3 region via a 2.2-kb homologous repeat. The amplification polymorphism was found to result in the presence of one to five extra functional J-C(lambda)2 per genome regions, leading to decreased Ig(kappa):Ig(lambda) ratios on normal peripheral blood B cells. Via sequence analysis, we demonstrated that the Mcg(-)Ke(+)Oz(-) isotype is encoded by a polymorphic C(lambda)2 segment that differs from the normal C(lambda)2 gene segment at a single nucleotide position. This polymorphism was identified in only 1.5% (2 of 134) of individuals without J-C(lambda)2 amplification polymorphism and was not found in the J-C(lambda)2 amplification polymorphism of 44 individuals, indicating that the two IGL gene polymorphisms are not linked. 相似文献
97.
Alies van Lier Scott A. McDonald Martijn Bouwknegt EPI group Mirjam E. Kretzschmar Arie H. Havelaar Marie-Josée J. Mangen Jacco Wallinga Hester E. de Melker 《PloS one》2016,11(4)
BackgroundInfectious disease burden estimates provided by a composite health measure give a balanced view of the true impact of a disease on a population, allowing the relative impact of diseases that differ in severity and mortality to be monitored over time. This article presents the first national disease burden estimates for a comprehensive set of 32 infectious diseases in the Netherlands.ConclusionsFor guiding and supporting public health policy decisions regarding the prioritisation of interventions and preventive measures, estimates of disease burden and the comparison of burden between diseases can be informative. Although the collection of disease-specific parameters and estimation of incidence is a process subject to continuous improvement, the current study established a baseline for assessing the impact of future public health initiatives. 相似文献
98.
Mirjam Froehlicher Ksenia Groh Stephan C.F. Neuhauss Rik I.L. Eggen 《Developmental biology》2009,330(1):32-129
Estrogens are known to play a role in both reproductive and non-reproductive functions in mammals. Estrogens and their receptors are involved in the development of the central nervous system (brain development, neuronal survival and differentiation) as well as in the development of the peripheral nervous system (sensory-motor behaviors). In order to decipher possible functions of estrogens in early development of the zebrafish sensory system, we investigated the role of estrogen receptor β2 (ERβ2) by using a morpholino (MO) approach blocking erβ2 RNA translation. We further investigated the development of lateral line organs by cell-specific labeling, which revealed a disrupted development of neuromasts in morphants. The supporting cells developed and migrated normally. Sensory hair cells, however, were absent in morphants' neuromasts. Microarray analysis and subsequent in situ hybridizations indicated an aberrant activation of the Notch signaling pathway in ERβ2 morphants. We conclude that signaling via ERβ2 is essential for hair cell development and may involve an interaction with the Notch signaling pathway during cell fate decision in the neuromast maturation process. 相似文献
99.
Eloisa Berman Arévalo Mirjam A. F. Ros-Tonen 《Human ecology: an interdisciplinary journal》2009,37(6):733-747
While much research on forest partnerships hitherto has been focused mainly on the drivers behind their formation, the kind
of actors and deals involved, and the factors that promote or hinder their success, much less attention has been paid to the
dynamic relationships and processes inherent in these partnerships. Based on the study of a partnership process in an indigenous
reservation in Colombian Amazonia covering a variety of projects, this paper seeks to fill part of this lacuna by analyzing
the partnership as a dynamic ‘discursive battlefield,’ in which objectives and actions are being constantly negotiated. Actors
in the Matavén partnership strategically incorporate discursive elements in order to pursue their own interests while also
endorsing those that ensure the continuation of collaboration. We conclude that discourses are embedded in partnership micro-politics.
On the one hand, discursive shifts occur as a reflection of power balances at given moments. On the other hand, discourses
constitute indispensable resources with the potential to both enhance individual actor’s negotiating power and to create opportunities
for compromise. Within an ongoing discursive tension between ‘conservation’ and ‘indigenous autonomy,’ flexible notions such
as ‘territorial ordering’ prove to be successful in allowing space for manoeuvre and granting conceptual coherence to shifts
occurring ‘on the ground.’ 相似文献
100.
Fredrik I. Andersson Anders Tryggvesson Michal Sharon Alexander V. Diemand Mirjam Classen Christoph Best Ronny Schmidt Jenny Schelin Tara M. Stanne Bernd Bukau Carol V. Robinson Susanne Witt Axel Mogk Adrian K. Clarke 《The Journal of biological chemistry》2009,284(20):13519-13532
The Clp protease is conserved among eubacteria and most eukaryotes, and
uses ATP to drive protein substrate unfolding and translocation into a chamber
of sequestered proteolytic active sites. The main constitutive Clp protease in
photosynthetic organisms has evolved into a functionally essential and
structurally intricate enzyme. The model Clp protease from the cyanobacterium
Synechococcus consists of the HSP100 molecular chaperone ClpC and a
mixed proteolytic core comprised of two distinct subunits, ClpP3 and ClpR. We
have purified the ClpP3/R complex, the first for a Clp proteolytic core
comprised of heterologous subunits. The ClpP3/R complex has unique functional
and structural features, consisting of twin heptameric rings each with an
identical ClpP33ClpR4 configuration. As predicted by its
lack of an obvious catalytic triad, the ClpR subunit is shown to be
proteolytically inactive. Interestingly, extensive modification to ClpR to
restore proteolytic activity to this subunit showed that its presence in the
core complex is not rate-limiting for the overall proteolytic activity of the
ClpCP3/R protease. Altogether, the ClpP3/R complex shows remarkable
similarities to the 20 S core of the proteasome, revealing a far greater
degree of convergent evolution than previously thought between the development
of the Clp protease in photosynthetic organisms and that of the eukaryotic 26
S proteasome.Proteases perform numerous tasks vital for cellular homeostasis in all
organisms. Much of the selective proteolysis within living cells is performed
by multisubunit chaperone-protease complexes. These proteases all share a
common two-component architecture and mode of action, with one of the best
known examples being the proteasome in archaebacteria, certain eubacteria, and
eukaryotes (1).The 20 S proteasome is a highly conserved cylindrical structure composed of
two distinct types of subunits, α and β. These are organized in
four stacked heptameric rings, with two central β-rings sandwiched
between two outer α-rings. Although the α- and β-protein
sequences are similar, it is only the latter that is proteolytic active, with
a single Thr active site at the N terminus. The barrel-shaped complex is
traversed by a central channel that widens up into three cavities. The
catalytic sites are positioned in the central chamber formed by the
β-rings, adjacent to which are two antechambers conjointly built up by
β- and α-subunits. In general, substrate entry into the core
complex is essentially blocked by the α-rings, and thus relies on the
associating regulatory partner, PAN and 19 S complexes in archaea and
eukaryotes, respectively (1).
Typically, the archaeal core structure is assembled from only one type of
α- and β-subunit, so that the central proteolytic chamber contains
14 catalytic active sites (2).
In contrast, each ring of the eukaryotic 20 S complex has seven distinct
α- and β-subunits. Moreover, only three of the seven
β-subunits in each ring are proteolytically active
(3). Having a strictly
conserved architecture, the main difference between the 20 S proteasomes is
one of complexity. In mammalian cells, the three constitutive active subunits
can even be replaced with related subunits upon induction by
γ-interferon to generate antigenic peptides presented by the class 1
major histocompatibility complex
(4).Two chambered proteases architecturally similar to the proteasome also
exist in eubacteria, HslV and ClpP. HslV is commonly thought to be the
prokaryotic counterpart to the 20 S proteasome mainly because both are Thr
proteases. A single type of HslV protein, however, forms a proteolytic chamber
consisting of twin hexameric rather than heptameric rings
(5). Also displaying structural
similarities to the proteasome is the unrelated ClpP protease. The model Clp
protease from Escherichia coli consists of a proteolytic ClpP core
flanked on one or both sides by the ATP-dependent chaperones ClpA or ClpX
(6). The ClpP proteolytic
chamber is comprised of two opposing homo-heptameric rings with the catalytic
sites harbored within (7). ClpP
alone displays only limited peptidase activity toward short unstructured
peptides (8). Larger native
protein substrates need to be recognized by ClpA or ClpX and then translocated
in an unfolded state into the ClpP proteolytic chamber
(9,
10). Inside, the unfolded
substrate is bound in an extended manner to the catalytic triads (Ser-97,
His-122, and Asp-171) and degraded into small peptide fragments that can
readily diffuse out (11).
Several adaptor proteins broaden the array of substrates degraded by a Clp
protease by binding to the associated HSP100 partner and modifying its protein
substrate specificity (12,
13). One example is the
adaptor ClpS that interacts with ClpA (EcClpA) and targets N-end rule
substrates for degradation by the ClpAP protease
(14).Like the proteasome, the Clp protease is found in a wide variety of
organisms. Besides in all eubacteria, the Clp protease also exist in mammalian
and plant mitochondria, as well as in various plastids of algae and plants. It
also occurs in the unusual plastid in Apicomplexan protozoan
(15), a family of parasites
responsible for many important medical and veterinary diseases such as
malaria. Of all these organisms, photobionts have by far the most diverse
array of Clp proteins. This was first apparent in cyanobacteria, with the
model species Synechococcus elongatus having 10 distinct Clp
proteins, four HSP100 chaperones (ClpB1–2, ClpC, and ClpX), three ClpP
proteins (ClpP1–3), a ClpP-like protein termed ClpR, and two adaptor
proteins (ClpS1–2) (16).
Of particular interest is the ClpR variant, which has protein sequence
similarity to ClpP but appears to lack the catalytic triad of Ser-type
proteases (17). This diversity
of Clp proteins is even more extreme in photosynthetic eukaryotes, with at
least 23 different Clp proteins in the higher plant Arabidopsis
thaliana, most of which are plastid-localized
(18).We have recently shown that two distinct Clp proteases exist in
Synechococcus, both of which contain mixed proteolytic cores. The
first consists of ClpP1 and ClpP2 subunits, and associates with ClpX, whereas
the other has a proteolytic core consisting of ClpP3 and ClpR that binds to
ClpC, as do the two ClpS adaptors
(19). Of these proteases, it
is the more constitutively abundant ClpCP3/R that is essential for cell
viability and growth (20,
21). It is also the ClpP3/R
complex that is homologous to the single type in eukaryotic plastids, all of
which also have ClpC as the chaperone partner
(16). In algae and plants,
however, the complexity of the plastidic Clp proteolytic core has evolved
dramatically. In Arabidopsis, the core complex consists of five ClpP
and four ClpR paralogs, along with two unrelated Clp proteins unique to higher
plants (22). Like ClpP3/R, the
plastid Clp protease in Arabidopsis is essential for normal growth
and development, and appears to function primarily as a housekeeping protease
(23,
24).One of the most striking developments in the Clp protease in photosynthetic
organisms and Apicomplexan parasites is the inclusion of ClpR within the
central proteolytic core. Although this type of Clp protease has evolved into
a vital enzyme, little is known about its activity or the exact role of ClpR
within the core complex. To address these points we have purified the intact
Synechococcus ClpP3/R proteolytic core by co-expression in E.
coli. The recombinant ClpP3/R forms a double heptameric ring complex,
with each ring having a specific ClpP3/R stoichiometry and arrangement.
Together with ClpC, the ClpP3/R complex degrades several polypeptide
substrates, but at a rate considerably slower than that by the E.
coli ClpAP protease. Interestingly, although ClpR is shown to be
proteolytically inactive, its inclusion in the core complex is not
rate-limiting to the overall activity of the ClpCP3/R protease. In general,
the results reveal remarkable similarities between the evolutionary
development of the Clp protease in photosynthetic organisms and the eukaryotic
proteasome relative to their simpler prokaryotic counterparts. 相似文献