首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   90篇
  国内免费   2篇
  674篇
  2021年   14篇
  2020年   5篇
  2019年   9篇
  2017年   12篇
  2016年   7篇
  2015年   15篇
  2014年   10篇
  2013年   19篇
  2012年   23篇
  2011年   19篇
  2010年   20篇
  2009年   15篇
  2008年   18篇
  2007年   17篇
  2006年   21篇
  2005年   15篇
  2004年   17篇
  2003年   15篇
  2002年   12篇
  2001年   10篇
  2000年   14篇
  1999年   14篇
  1998年   15篇
  1997年   12篇
  1996年   8篇
  1994年   6篇
  1993年   15篇
  1992年   19篇
  1991年   17篇
  1990年   11篇
  1989年   12篇
  1988年   18篇
  1987年   10篇
  1986年   10篇
  1985年   21篇
  1984年   16篇
  1983年   10篇
  1982年   6篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   6篇
  1973年   10篇
  1972年   8篇
  1969年   7篇
  1968年   17篇
  1967年   6篇
  1966年   11篇
  1965年   11篇
排序方式: 共有674条查询结果,搜索用时 15 毫秒
81.
82.
Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED), in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.  相似文献   
83.
There are 10 gene families that have members on both human chromosome 6 (6p21.3, the location of the human major histocompatibility complex [MHC]) and human chromosome 9 (mostly 9q33-34). Six of these families also have members on mouse chromosome 17 (the mouse MHC chromosome) and mouse chromosome 2. In addition, four of these families have members on human chromosome 1 (1q21-25 and 1p13), and two of these have members on mouse chromosome 1. One hypothesis to explain these patterns is that members of the 10 gene families of human chromosomes 6 and 9 were duplicated simultaneously as a result of polyploidization or duplication of a chromosome segment ("block duplication"). A subsequent block duplication has been proposed to account for the presence of representatives of four of these families on human chromosome 1. Phylogenetic analyses of the 9 gene families for which data were available decisively rejected the hypothesis of block duplication as an overall explanation of these patterns. Three to five of the genes on human chromosomes 6 and 9 probably duplicated simultaneously early in vertebrate history, prior to the divergence of jawed and jawless vertebrates, and shortly after that, all four of the genes on chromosomes 1 and 9 probably duplicated as a block. However, the other genes duplicated at different times scattered over at least 1.6 billion years. Since the occurrence of these clusters of related genes cannot be explained by block duplication, one alternative explanation is that they cluster together because of shared functional characteristics relating to expression patterns.   相似文献   
84.
85.
The energy produced from the investment in biofuel crops needs to account for the environmental impacts on soil, water, climate change and ecosystem services. A regionalized approach is needed to evaluate the environmental costs of large-scale biofuel production. We present a regional pan-European simulation of rapeseed ( Brassica napus ) cultivation. Rapeseed is the European Union's dominant biofuel crop with a share of about 80% of the feedstock. To improve the assessment of the environmental impact of this biodiesel production, we performed a pan-European simulation of rapeseed cultivation at a 10 × 10 km scale with Environmental Policy Integrated Climate (EPIC). The model runs with a daily time step and model input consists of spatialized meteorological measurements, and topographic, soil, land use, and farm management practices data and information. Default EPIC model parameters were calibrated based on literature. Modelled rapeseed yields were satisfactory compared with yields at regional level reported for 151 regions obtained for the period from 1995 to 2003 for 27 European Union member countries, along with consistent modelled and reported yield responses to precipitation, radiation and vapour pressure deficit at regional level. The model is currently set up so that plant nutrient stress is not occurring. Total fertilizer consumption at country level was compared with IFA/FAO data. This approach allows us to evaluate environmental pressures and efficiencies arising from and associated with rapeseed cultivation to further complete the environmental balance of biofuel production and consumption.  相似文献   
86.
Estimation of evolutionary distances from coding sequences must take into account protein-level selection to avoid relative underestimation of longer evolutionary distances. Current modeling of selection via site-to-site rate heterogeneity generally neglects another aspect of selection, namely position-specific amino acid frequencies. These frequencies determine the maximum dissimilarity expected for highly diverged but functionally and structurally conserved sequences, and hence are crucial for estimating long distances. We introduce a codon- level model of coding sequence evolution in which position-specific amino acid frequencies are free parameters. In our implementation, these are estimated from an alignment using methods described previously. We use simulations to demonstrate the importance and feasibility of modeling such behavior; our model produces linear distance estimates over a wide range of distances, while several alternative models underestimate long distances relative to short distances. Site-to-site differences in rates, as well as synonymous/nonsynonymous and first/second/third-codon-position differences, arise as a natural consequence of the site-to-site differences in amino acid frequencies.   相似文献   
87.
88.
89.
90.
Summary Nodule biomass and yearly C2H2 reduction rates are reported forInga jinicuil, a leguminous tree used for shade in Mexican coffee plantations. Annual fixation by this species approximates 35 kg ha–1; which, when compared to nitrogen additions from fertilizers, represents an important nitrogen input to the coffee ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号