首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1269篇
  免费   184篇
  2022年   9篇
  2021年   13篇
  2016年   24篇
  2015年   32篇
  2014年   35篇
  2013年   37篇
  2012年   38篇
  2011年   44篇
  2010年   42篇
  2009年   29篇
  2008年   56篇
  2007年   52篇
  2006年   48篇
  2005年   37篇
  2004年   45篇
  2003年   36篇
  2002年   44篇
  2001年   58篇
  2000年   48篇
  1999年   33篇
  1998年   17篇
  1997年   16篇
  1996年   17篇
  1995年   14篇
  1994年   20篇
  1993年   21篇
  1992年   31篇
  1991年   44篇
  1990年   36篇
  1989年   33篇
  1988年   22篇
  1987年   32篇
  1986年   29篇
  1985年   29篇
  1984年   21篇
  1983年   30篇
  1982年   15篇
  1981年   9篇
  1980年   18篇
  1979年   25篇
  1978年   15篇
  1977年   16篇
  1976年   9篇
  1975年   12篇
  1974年   18篇
  1972年   12篇
  1971年   10篇
  1970年   10篇
  1968年   11篇
  1965年   8篇
排序方式: 共有1453条查询结果,搜索用时 31 毫秒
41.
The alphaviruses: gene expression, replication, and evolution.   总被引:41,自引:0,他引:41       下载免费PDF全文
The alphaviruses are a genus of 26 enveloped viruses that cause disease in humans and domestic animals. Mosquitoes or other hematophagous arthropods serve as vectors for these viruses. The complete sequences of the +/- 11.7-kb plus-strand RNA genomes of eight alphaviruses have been determined, and partial sequences are known for several others; this has made possible evolutionary comparisons between different alphaviruses as well as comparisons of this group of viruses with other animal and plant viruses. Full-length cDNA clones from which infectious RNA can be recovered have been constructed for four alphaviruses; these clones have facilitated many molecular genetic studies as well as the development of these viruses as expression vectors. From these and studies involving biochemical approaches, many details of the replication cycle of the alphaviruses are known. The interactions of the viruses with host cells and host organisms have been exclusively studied, and the molecular basis of virulence and recovery from viral infection have been addressed in a large number of recent papers. The structure of the viruses has been determined to about 2.5 nm, making them the best-characterized enveloped virus to date. Because of the wealth of data that has appeared, these viruses represent a well-characterized system that tell us much about the evolution of RNA viruses, their replication, and their interactions with their hosts. This review summarizes our current knowledge of this group of viruses.  相似文献   
42.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   
43.
44.
The 3' end of Sindbis virus minus-sense RNA was tested for its ability to bind proteins in mosquito cell extracts, using labeled riboprobes that represented different parts of this region. We found four domains in the first 250 nucleotides that could bind the same 50- and 52-kDa proteins, three with high affinity and one with low affinity, whereas tested domains outside this region did not bind these proteins. The first binding domain was found in the first 60 nucleotides, which represents the complement of the 5'-nontranslated region, the second in the next 60 nucleotides, the third in the following 60 nucleotides, and the fourth between nucleotides 194 and 249 (all numbering is 3' to 5'). The relative binding constants, Kr, of the first, second, and fourth sites were similar, whereas that of domain 2 was fivefold less. Deletion mapping of the first domain showed that the first 10 nucleotides were critical for binding. Deletion of nucleotides 2 to 4, deletion or replacement of nucleotide 5, or deletion of the first 15 nucleotides was deleterious for binding, deletion of nucleotides 10 to 15, 26 to 40, or 41 to 55 had little effect on the binding, and deletion of nucleotides 15 to to 25 increased the binding affinity. We also found that the corresponding riboprobes derived from two other alphaviruses, Ross River virus and Semliki Forest virus, and from rubella virus were also able to interact with the 50- and 52-kDa proteins. The Kr value for the Semliki Forest virus probe was similar to that for the Sindbis virus probe, while that for the Ross River virus probe was four times greater. The rubella virus probe was bound only weakly, consistent with the fact that mosquito cells are not permissive for rubella virus replication. We suggest that the binding of the 50- and 52-kDa proteins to the 3' end of alphavirus minus-sense RNA represents an important step in the initiation of RNA replication.  相似文献   
45.
Y. P. Hong  V. D. Hipkins    S. H. Strauss 《Genetics》1993,135(4):1187-1196
The amount, distribution and mutational nature of chloroplast DNA polymorphisms were studied via analysis of restriction fragment length polymorphisms in three closely related species of conifers, the California closed-cone pines-knobcone pine: Pinus attenuata Lemm.; bishop pine: Pinus muricata D. Don; and Monterey pine: Pinus radiata D. Don. Genomic DNA from 384 trees representing 19 populations were digested with 9-20 restriction enzymes and probed with cloned cpDNA fragments from Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] that comprise 82% of the chloroplast genome. Up to 313 restriction sites were surveyed, and 25 of these were observed to be polymorphic among or within species. Differences among species accounted for the majority of genetic (haplotypic) diversity observed [G(st) = 84(+/-13)%]; nucleotide diversity among species was estimated to be 0.3(+/-0.1)%. Knobcone pine and Monterey pine displayed almost no genetic variation within or among populations. Bishop pine also showed little variability within populations, but did display strong population differences [G(st) = 87(+/-8)%] that were a result of three distinct geographic groups. Mean nucleotide diversity within populations was 0.003(+/-0.002)%; intrapopulation polymorphisms were found in only five populations. This pattern of genetic variation contrasts strongly with findings from study of nuclear genes (allozymes) in the group, where most genetic diversity resides within populations rather than among populations or species. Regions of the genome subject to frequent length mutations were identified; estimates of subdivision based on length variant frequencies in one region differed strikingly from those based on site mutations or allozymes. Two trees were identified with a major chloroplast DNA inversion that closely resembled one documented between Pinus and Pseudotsuga.  相似文献   
46.
47.
48.
49.
We used restriction fragment analysis of chloroplast, nuclear, and mitochondrial DNA to study phylogeny in the genus Pinus. Total genomic DNA of 18 to 19 pine species that spanned 14 of the 15 subsections in the genus was cut with 8 restriction enzymes, blotted, and then probed with up to 17 cloned DNA fragments—which were mostly from the chloroplast genome of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco). A total of 116 shared characters, the majority representing single point mutations, were subjected to Wagner and Dollo parsimony analyses, coupled with bootstrapping and construction of consensus trees. The hard (subgenus Pinus) and soft pines (subgenus Strobus) were distinct. The soft pines in section Parrya, represented by P. longaeva, edulis, monophylla, and gerardiana, were the group closest to the hypothesized root of the genus. They were also more diverse and more closely related to the hard pines than were their descendents in section Strobus, represented by P. koraiensis, albicaulis, griffithii, and lambertiana, all of which were remarkably similar. Except for a strong clade involving P. canariensis and pinea (section Ternatae), the hard pines were weakly differentiated. The high similarity within the most speciose groups of pines (sections Strobus and Pinus) suggests that the bulk of the genus radiated relatively recently. In contrast to a recent classification, P. leiophylla was not associated with section Ternatae; instead, it appears to belong in section Pinus, and showed a high similarity to P. taeda of subsection Australes. Subsection Oocarpae, represented by P. oocarpa and radiata, appears to be a natural group, and is related to subsection Contortae, represented by P. contorta. More extensive restriction fragment studies will yield many new insights into evolution in the genus. Other methods, however, such as DNA sequencing or fine structure analysis of restriction site mutations, are likely to be necessary for rooting pine phylogenies with respect to other coniferous genera, and for estimating divergence times.  相似文献   
50.
We describe a microcomputer system utilizing the Computerized Laboratory Notebook (CLN) concept developed in our laboratory for the purpose of automating the Battery of Leukocyte Tests (BLT). The BLT was designed to evaluate blood specimens for toxic, immunotoxic, and genotoxic effects after in vivo exposure to putative mutagens. A system was developed with the advantages of low cost, limited spatial requirements, ease of use for personnel inexperienced with computers, and applicability to specific testing yet flexibility for experimentation. This system eliminates cumbersome record keeping and repetitive analysis inherent in genetic toxicology bioassays. Statistical analysis of the vast quantity of data produced by the BLT would not be feasible without a central database. Our central database is maintained by an integrated package which we have adapted to develop the CLN. The clonal assay of lymphocyte mutagenesis (CALM) section of the CLN is demonstrated. PC-Slaves expand the microcomputer to multiple workstations so that our computerized notebook can be used next to a hood while other work is done in an office and instrument room simultaneously. Communication with peripheral instruments is an indispensable part of many laboratory operations, and we present a representative program, written to acquire and analyze CALM data, for communicating with both a liquid scintillation counter and an ELISA plate reader. In conclusion we discuss how our computer system could easily be adapted to the needs of other laboratories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号